(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 6, 2018

Formal Analysis and Verification of Agent-Oriented
Supply-Chain Management

Muhammad Zubair Shoukat, Muhammad Atif,
Imran Riaz Hasrat
Department of Computer Science
and Information Technology
The University of Lahore
Lahore, Pakistan

Abstract—Managing various relationships among the supply
chain processes is known as Supply Chain Management (SCM).
SCM is the oversight of finance, information and material as
they move in the flow from different suppliers to manufac-
turer, wholesaler, retailer and customers. The main problem
with such software architecture is coordination and reliability
while performing activities. Moreover, continuously changing
market makes this coordination challenging. For example fail-
ure of production facilities, irregularities in meeting deadlines,
unavailability of workers at required times. However, in the
Agent-Oriented Supply-Chain Management described in [Mark
S. Fox, Mihai Barbuceanu, and Rune Teigen ‘“Agent-Oriented
Supply-Chain Management”. The International Journal of Flex-
ible Manufacturing Systems, 12 (2000)] the proposed solution
claims a remarkable coordination on the basis of an agent-
oriented software architecture. In this paper, we formally specify
architecture and verify it using model checking. We use UPPAAL
to formally specify the agents’ behaviour involved in SCM. By
model-checking, we prove that the given SCM’s architecture
partially fulfills its functional requirements.

Keywords—Supply chain management; agent-oriented supply-
chain; model checking; formal specification and verification

I. INTRODUCTION

Supply chain is a system of organizing activities, people,
resources and information involved during the movement of
raw material or finished goods from supplier to customer. Man-
aging various relationships among the supply chain processes
is known as supply chain management (SCM). Supply chain
management (SCM) is the oversight of finance, information
and material as they move in the flow from different suppliers
to manufacturer, wholesaler, retailer and customers. Supply
chain management (SCM) software architecture maintains
coordination among and within companies. The main problem
with such software architecture is the coordination and relia-
bility while performing activities but the drastically changing
market makes the coordination complex.

Supply Chain is not a chain of businesses rather it is a
relationship of multiple businesses [1]. It represents a new way
of managing the relationship and associated businesses. So,
there is need to build standardized methods to put supply chain
management (SCM) in practice.

Nirupam Julka et al. in [2] propose a unified framework for
monitoring, modeling and management of supply chain. The

Department of Software Engineering
The University of Lahore

Nadia Mushtaq Ijaz Ahmed
Department of Computer and
Information Sciences DWC
Higher College of Technology

Dubai, United Arabe of Emirates

Lahore, Pakistan

proposed framework implements various activities of supply
chain like production process, enterprise, business knowledge
and data. It presents all the activities as an intelligent and
unified function. Various software agents are used to compete
activities. This framework helps to evaluate and analyze the
different business behaviours according to different circum-
stances faced in supply chain management.

In [3], certain issues regarding agent-oriented supply chain
management are investigated and for those issues respective
solutions are presented. It is claimed that the proposed solution
can handle the complex tasks and interruptions caused by some
unexpected events. Our target in this paper is to study the
proposed solution for formal specification and verification For-
mal verification offers a large potential to provide correctness
measuring techniques [4]. We apply model checking as formal
analysis by using a tool-set UPPAAL.

During the past few years, many automatic verifications
and modeling tools for real-time and hybrid structures [5], [6],
[7], [8] and [9] have been developed.

The main contribution of this research is a formally de-
scribed Agent based supply chain management system given
in [3] with a set of formal and informal requirements. We
prove that the given construction of agent-oriented architecture
doesn’t meet certain functional requirements. The results are
given in the form of message sequence charts.

Structure of the Paper: In Section II, we describe the
behaviour of agents which are participants of the agent-orients
supply chain management. The behaviour of these participants
is formally specified and explained in Section III. Functional
requirements are described in Section IV which are specified
as formulas in Section IV-A. Results of model-checking are
there in Section V. Section VI provides limitations used to
develop formal models and we conclude this paper in Section
VIIL

II. AGENT-ORIENTED SUPPLY CHAIN MANAGEMENT
SYSTEM

In Fig. 1, the basic architecture is shown which tells about
the customer conversation with the logistics agent. The process
starts when a customer agent place an order, the logistics
agent receives the proposal and acknowledges the customer
about the received order. Logistics receives the order and

www.ijacsa.thesai.org

409 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Rejected

= ") ;
Start Proposed Counterp

2 > ;r.

Failed
Working
Satisfied

Rejected Accepted

Fig. 1. Customer conversation [3].

tries to decompose the order into different activities if the
order decomposed the next process starts if decomposition not
possible the process ends. In case of decomposition the next
process will be the ranking of contractors on the bases of the
activities that are formed after decomposing the order. This
process contains two steps: one is formation of large teams
and the other is formation of small teams.

In large teams all the contractors that are interested in
performing the activities are involved each activity have at
least one contractor. After this small teams formed in which
one contractor assigned to the one activity. In this stage small
team should work cooperatively and inform to the logistics
if they have any problem that make it impossible for them
to complete their task or activities assigned to them. In
case of decomposition is failed, the logistics acknowledges
negatively so that the customer may change the proposal. The
possible changes can be on the basis of requirements, time
or contractors’ availability. If logistics again cannot handle a
modified proposal then it goes to rejected state.

After the work completion Logistics hand over the work
to the customer and customer state is accepted then. If the
customer is satisfied then feedback is provided by going on
satisfied state. In this way, multiple agents can be considered
while placing an order in the agent based supply chain man-
agement system.

A. Customer and Logistics Agents

e Customer Agent: The customer agent sends proposal
to the logistics agent and goes to working state. After
the processing a proposal the logistic agents acknowl-
edge to the customer agent. The customers may go
to a rejected state or can ask for counter proposal if
the order cannot be decomposed. If customer satisfied
then it goes to satisfied state otherwise on failed state.

e Logistics Agent: The logistics agent receives the pro-
posal and works on it. Logistics agent also informs
the customer that working has been initiated on the
proposal. Logistics agent decomposes the order or
proposal, rank the contractors and also creates the
teams that are able to perform the activities according
to customer need. Logistics agent also negotiates with
customer if there is delays in work or if the decom-

Vol. 9, No. 6, 2018

position not possible logistics negotiate with different
proposal.

III. FORMAL SPECIFICATIONS

Our formal specification in UPPAAL covers the following
participants or processes, i.e. the Customer, the Logistics and
the Small Team. The main process is the Logistics process.
The logistics process receives and sends messages to the other
processes to communicate with them. The customer can sends
order to any logistics process using handshaking channels.
After reception of order the logistics decomposes the order
and sends it to the small team. The small team communicates
with logistics process and committed to complete that task
after checking its schedule. We gives a brief description of the
formal specifications model checking of main processes in our
explanation of the architecture.

We specify all the concurrent processes of Agent-Oriented
Supply-Chain Management. The Customer, Logistics and
Small Team are the processes or participants in the given
model. These processes of the software architecture are mod-
eled as parallel processes.

A. Channels

This software architecture uses thirteen channels. To model
the functionality of Agent-Oriented Supply-Chain Manage-
ment the following channels are used for one-to-one commu-
nication or for broadcasting:

1) Proposal: This channel is used by a customer to send
some proposal to logistic agents.

2) Order: If proposal is accepted then this channel is
used place order for selected items.

3) Reject; This channel is used to acknowledges a cus-
tomer if some order can be processed or not.

4) Success: A completion of order is conveyed through
this channel.

5) Failed: A team uses this channel if some order cannot
be completed with certain time.

6) Complete: If a task is completed successfully then an
acknowledgment is sent by a small team through this
channel.

7) NegTl: This channel is used to send task to the small
team 1 by the logistics.

8) NegT2: This channel is used to send task to the small
team 2 by the logistics.

9) Commited: This channel is used to send acknowledg-
ment to the logistics by the small team if the team is
interested and willing to work.

10) Alternative: This channel is used to send acknowledg-
ment to the logistics by the small team if the team
has some issues in the proposal and needs alternative
which is received from the logistics.

11) NewTI: This channel is used to send task to the small
team 1 after the new contractor is assigned to the
existing task.

12) NewT2: This channel is used to send task to the small
team 2 after the new contractor is assigned to the
existing task.

13) Change: This channel is used to send acknowledg-
ment to the small team if the new contractor is not
available for the existing task.

www.ijacsa.thesai.org

410 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

proposalCounter++ ?5“ proposalCounter++

e \)j A
|%roposaICcl)u nter<2
roposal[pid]!

proposa
O

Order[i][j1[pid]!
kSuccess[pid]?/\ Reject[pid]?)
~
Working

Fig. 2. The customer process.

B. Behaviour of a Customer Process

In Fig. 2, the automaton for Customer process is illustrated.
The initial state is named as Start. The Customer process has
three states. The first state is Start state, second is Proposal
state and the third state is Working state. There are four major
actions in this process described below:

1) Sending proposal to the Logistics.

2) Sending Order to the Logistics and waiting for the
response.

3) Going to the start state through rejected path if
response is negative from Logistics.

4) Going to the start state through success path if order
is successfully completed.

First of all, the channel Proposal transfers a value to some
logistic agent which is originated by a customer process. The
logistic agents receives these values while synchronization of
channel Proposal[x]. Here ‘x’ represents process ID (pid), i.e.,
the customer ID sending a proposal.

Secondly, after sending proposal the customer sends order
using channel Order[2][2] which is received by the logistics
at channel Order[i][j][cus_id] and goes to the Working state.
There are two values i’ and ’j’ that are sent by the Customer
for the activities that a customer needs. If i=0 and j=1 the
Customer needs activity j, if i=1 and j=0 the customer needs
activity 7 and if both i and j are 1 the customer needs both the
activities.

At the end if the customer receives error message from the
logistics that the order cannot be processed or teams fail to
work then it goes to Start state using Reject channel, if the
work is successfully done it goes to Start state using Success
channel. On initial state means that it is ready for the next
proposal. There is a counter proposalCounter for the proposals
sent by a Customer.

Vol. 9, No. 6, 2018

C. Automaton for the Logistics Process

In Fig. 3 the automaton for Logistics process is illustrated.
The initial state is named as Start. There are five major actions
in this process described below:

1) Receiving proposal from the Customer and decom-
pose it.

2) Forming small team of contractors that will execute
the activities.

3) Providing alternative if small team has issue in the
order.

4) Providing alternative contractor if one team needs
alternative and other one ready to work.

5) Providing alternative contractor if one team fails to
complete its work and other one successfully com-
pleted work.

The Fig. 4 shows that the Logistics process receives pro-
posal using synchronization channel Proposal{x]. These values
are process ID of Customer describes that which customer
sends order. After receiving proposal the Logistics receives
order from the Customer using channel Order[i][j][cus_id]?.
There are two values ’i’ and ’j’ that are received by the
Logistics are the activities that customer needs. If i=0 and j=1
the Customer needs activity j, if i=1 and j=0 the Customer
needs activity i and if both i and j are 1 the Customer needs
both the activities.

After receiving order a Logistic agent tries to rank con-
tractors according to the activities a Customer demands. For
example if customer needs Al activity then contractor that can
perform Al activity is not available then the order is rejected
and Logistics goes to Start state, ready to receive new order
and acknowledges the Customer. Similarly, if Customer needs
Al and A2 activities contractors for both activities should be
available. If contractors successfully ranked Logistics assign
activities to contractors and goes to ContractorRanked State.

Fig. 5 shows the next part of the Logistics process. After
ranking the contractors Logistics waits for the response from
the small team whether or not they will accept the contract.
This is done by sending each activity to that small team
which is available and willing to do work. For this purpose
NegTl[pid][0]! and NegT2[pid][1]! channels are used for
SmallTeam(0) and SmallTeam(1), respectively where [pid] is
the process id of Logistics sending order and /0] and /1] values
describe the pid of SmallTeam to which Logistics are sending
order. The response from the SmallTeam can be of three types
Logistics receives it on SmallTeam state which is as follows:

1) Both the Small Teams are ready to do work or
committed.

2) Small Team I needs alternative and Small Team 2
ready to do work.

3) Small Team 1 ready to do work and Small Team 2
needs alternative.

If both the Small Teams are ready to do work. Then the Lo-
gistics receive the response using channels Commited|[pid][c]?
from both teams. Commitcount++ is used to count the commit
response, if the value in Commitcount is 2 it means both teams
committed in case of Customer needs one activity the value
of Commitcount will be 1. If Small Team I needs alternative

www.ijacsa.thesai.org

411 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 6, 2018

Reject[cus_id]! Stap,.\ ldecomposition() Reject[cus_id]! A1=0, A2=0, cus_id=0
(cus_id=0,fteam_id=0, Success[cus. id] @
Fail=0,Finish=0 Cont[0}=Conf[0}+A1 Ordertlilicus 1917 o, 1
' x:int[0,1] o 120 11=0) A1=i. A2=i OrderReceived
Cont[1]=Cont[1]+A2, Proposallx]? jint[0,1] (1=01[}'=0) A1=i, A2=j
A1=0,A2=0,0u5_0d=0, | cus idex , N
Finish=0,Fai|=0,finiSh() proposalRecelved decomposition()
dteam_id=0,fteam_id=0 Cont[0]=Cont0}-A1
NewT2[pid][1]! alter_T1() alter_T2() Cont[1]=Cont[1]-A2
1 NegT1[pid][O]! NegT2[pid][1]!
AlternativeNeeded Finish=2,Fail=0 d:int[0,1] update_cont_T1(), update_cont_T2(),
- - Complete[pid][d]? Alter=0,ateam_id=0 Alter=0,ateam_id=0
NewT1[pid][0]! fail_T1() L o ' - ' - _ e
fail T1T2() NewT4[pid][0] Finish++,dteam_id=d s A1 1&&A2 0
Cont[0]=Cont[0]-A1 update cont fail(),
fteam_id=0
Ifail_T1()&&!fail_T2() Smal
&lfail_T1_T2()) ConjiactorNeeded commited() a

failed() Contractory ommitted

Change! A1=0,A2=0 <

fail_T2()

NewT2jpig]pfpt| \ W T2Pidii]

Cont[1]=Cont[1]-A2
fail_T1_T2()

update_cont_fail(),
fteam_id=0 f:int[0,1]

Failed[pid][f]?

Commitcount=0,cteam_id=0

NewT1[pid][0]! Fail++,fteam_id=f
Cont[0]=Cont[0]-A1, .
Finish=2,Fail=0 altemnative()

A1=0,A2=0,Alter=0,

A1==18&A2==
NegT2[pid][1]!

c:int[0,1]

Commited[pid][c]? a:int[0,1]

Commitcount++,cteam_id=c Alternative[pid][a]?
Alter++,ateam_id=a

A1==08&A2==
NegT2[pid][1]!

ateam_id=0

Fig. 3. The logistics process.

Stal Idecomposition(} Rejeci[cus_id]! A1=0, A2=0, cus_id=0

Order(i][][cus_id]? tio
jint[o,1] (=0 ji=0) Ad=i, A2=j OrderReceived
p

decomposition()
Cont[0]=Cont[0]-A1
Cont[1]=Cont[1]-A2

F’cpésa\[x]”t
cus_id=x

Cnntra@anken

Fig. 4. The logistics process (a).

and Small Team 2 ready to do work or vice versa then
Commited[pid][c]? for committed and Alternative[pid][a]?
for alternative response is used. Commitcount++ used to count
the commit response and Alfer++ used to count the alternative
response.

When one team is committed and other needs alternative
then Logistics checks for the available contractors willing
to work and assign activity for which Small Team needs
an alternative. This is done by using NegTI[pid][0]! and
NegT2[pid][1]! for Small Team 1 and Small Team 2, respec-
tively.

Fig. 6 shows the next procedure after small team formation.
If both the teams need alternative in case Customer needs

alter_T1()
NegT1[pid][0]!
update_cont_T1(),
Alter=0,ateam_id=0

alter_T2()
NegT2[pid][1]!
update_cont_T2(),
Alter=0,ateam_id=0

A1==188A2==0
NeqgT1[pid][0]!

Smal

188A2==1
[pid][1]!

cint[0,1] \ 1=

Commited[pid][c]? a:int[0,1] NegT

Commitcount++,cteam_id=c Alternative[pid][a]?
Alter++ ateam_id=a

N
=
(=T
=

Fig. 5. The logistics process (b).

both activity then process goes to AlternativeNeeded state.
Moreover, it goes to Start state for negative acknowledgment to
customer using channel Reject[cus_id]! after which it becomes
ready for receiving new order. In case of small Teams are
committed to work then process goes to Contractorcommitted
state. At this state Logistics checks whether small teams have
complete their work or not. If the teams complete their work
successfully then the respective logistic agent goes to start
state using channel Success[cus_id] and acknowledges the
Customer accordingly. The number of failed teams are counted

www.ijacsa.thesai.org

412 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Reject[cus_id]!

Sta@

Cont{0]=Cont[0]+A1
Cont[1]=Cont[1]+A2
A1=0,A2=0,cus_id=0
Finish=0,Fail=0, finish
dteam_id=0,fleam_id=0

cus_id=0,fteam_id=0
Fail=0,Finish=0

Success[cus_id]!

AlternatijeNeeded Finish=2,Fail=!

ewTA[pid][0] fail_T1
fal_T1_T2 NewT1[pid][0]!
Cont{0]=Cont[0]-A1 update_cont_fail()

ail_T1()8&!fail_T2
(&8 fail_T1_T2 CDT)I
Change! A1=0.A2=0 &

SmallTeam

ommitcount=0,cteam_id=0

Cont[1]=Cont[1}-A2
fail_T1_T2

Did] 1[1]
update_cont_fail()
fteam_id=0

Failed[pid][f]?
lew D Fail++ fleam_id=f
Cont[0]=Cont[0]-A1
Finish=2 Fail=0

Sid
alternative
A1=0A2=0 Alter=0
ateam_id=0

Fig. 6. The logistics process (c).

by Fail.

When one team is successful and other team fails then
Logistics checks for the available contractors that are willing to
do work and assign activity for which Small Team fails. This is
done by using NewT1[pid][0]! and NewT2[pid][1]! for Small
Team 1 and Small Team 2, respectively. If the contractor is
available activity assigns to that contractor and after complet-
ing work Logistics process goes to ContractorCommitted state
and further more at Start state. In case of contractors are not
available then process goes to AlternativeNeeded using channel
Change! this transition further more goes to start state using
channel Rejected[cus_id]!.

When we use UPPAAL system models, functions can
be declared within the procedure or process. We can pass
parameters in functions and functions can also have return
type. The Logistics Process have various functions and are
used at different transitions to perform its functionality.

1. Decomposition(): function used as guard and checks the
contractor against activities. A/ and A2 are the activities. If
customer needs both activities vales of A/ and A2 will be 1, if
customer needs one activity then the value of A/ and A2 will
be 1 according to the activity that customer needs. This guard
prevents to take action if the contractors will not available
against the activity which customer needs and take action that
goes to start state so logistics can receive new order.

2. Committed(): function is also used as guard and checks
the small teams response. If customer needs both the activities
then both the teams should be committed to work if not, guard
will prevent to goes to ContractorCommitted state. If customer
needs one activity then the small team against that activity
should be committed. This Function uses an integer variable
CommitCount for counting the response form the the teams
and compares with number of teams and activities.

3. Alternative(): function is also used to check the small
team response. It works same as committed() function but the
difference is that in case of both activities, if both the teams

Vol. 9, No. 6, 2018

need alternative this guard will allow to go to Alternative-
Needed state through alternative transition. And if customer
needs one activity then the small team against that activity can
ask for alternate. This Function uses an integer variable Alter
for counting the response form the the teams and compares
with number of teams and activities.

4. Alter_T2(): function is used to check the availability
of contractors. If the customer needs both the activities and
1st team committed and 2nd team needs alternative, then
contractor for 2nd team should be available otherwise this
guard will prevents to take further action and wait for the
availability. Statement Cont[1];0 checks the availability. This
function uses Commitcount and Alter variables to check which
teams needs alternative.

5. Alter_TI(): function is also used to check the availability
of contractors. If the customer needs both the activities and
Ist team needs alternative and 2nd team is committed, then
contractor for 1st team should be available otherwise this
guard will prevent to take further actions and waits for the
availability. Statement Cont/0];0 checks the availability. This
function uses Commitcount and Alter variables to check which
teams needs alternative.

6. Finish(): function is used when small team complete
their work successfully after commitment. In case of customer
needs one activity, variable Finish value will be 1 and function
allows to finish the work and Logistics goes to Start state
to take new order. If customer needs both activities value of
Finish will be 2.

7. Failed(): function is used if the small team fails to
complete work after commitment. Both the teams can be
failed or may be one team fail and other complete the task
then this function will allows to take action and goes to
ContractorNeeded state. Fail and Finish variables are used to
check which teams are failed or has completed their work. If
value of Fuail is 2 then both the teams failed, if value of Fail
and Finish is 1 then one team has completed and other has
finished the work.

8. Fail_T2(): function is used to check the availability
of contractors in case of one team finishes its work and
other team completes its work successfully. If the customer
needs both the activities and 1st team finished work and
2nd team failed, then contractor for 2nd team should be
available for replacement otherwise this guard will prevents
and goes to AlternativeNeeded state. In case if a customer
needs only 2nd activity and small team fails to complete work
then contractor against that activity should be available for
replacement. Statement Cont/1];0 checks the availability. This
function uses fteam_id variable to check which teams is failed.

9. Fail_TI(): function works same as fail_T2() difference
is that if the customer needs both the activities and 1st team
failed and 2nd team finished, then contractor for 1st team
should be available for replacement otherwise this guard will
prevents and goes to AlternativeNeeded state. And if customer
needs only 1st activity and small team fails to complete work
then contractor against that activity should be available for
replacement. Statement Cont[0];0 checks the availability.

10. Fail_T1_T2(): function is used if customer needs both
activities and both are failed to complete their work after

www.ijacsa.thesai.org

413 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Change?
s

log_id=0

) Proposed

|
)

new_cdn_t'_id:_n
log_id=0
new_cont_id=0

)smeume

ewT1[m][pid]?
new_cont_ic=m
log_id=0 mp eteflog_id][pid
new_cont_id= og_id=0
S
Failed[log id][pid]! . Commited[log_id][pid
Fail @ o caledICIPIEE \orking ~ommitectiog_tajlpid}:

Fig. 7. The small team process.

commitment then both contractors for 1st team and 2nd
team should be available for replacement otherwise this guard
will prevents and goes to AlternativeNeeded state. Statement
Cont[0];0 and Cont[1];0 checks the availability.

11. Update_cont_T1() and update_cont_T2(): functions are
used to update contractors. If customer needs both activities
and one team is committed and other needs alternative. The
function used cteam_id, ateam_id and Alter variables to check
which team is committed and which one needs alternative.

12. Update_cont_fail: function is used to update contrac-
tors in case of customer needs both activities and one team
has completed its work successfully and other team failed to
work. This function uses same variables as previous functions.

D. The Automaton for the Small Team Process

Fig. 7 the automaton for small team process is illustrated.
The initial state is named as Start. The Logistics process has
five states. The first state is Start state, second is Proposed,
third is Schedule, fourth is Working and the fifth state is Fail
state. There are four major actions in this process described
below:

1) Receiving proposal from the logistics.

2) Sending acknowledgment to the logistics if needs
some changing or alternative proposal.

3) Sending acknowledgment to the logistics if ready to
perform activity and goes to Working state.

4) If fails to complete activity goes to fail state and
waiting for new contractor who is willing to complete
that activity.

The channel NegT1[x][pid]? and NegT2[y][pid]? receives
value from the logistics process, received values are the tasks
assigned to the team 1 and team 2 received from channels
NegTl[x][pid]? and NegT2[y][pid]?, respectively. The small
team checks its schedule if team has no issue and willing to
work. Then this small team acknowledges the logistics using
Commited[log_id][pid]! channel to go to Working state. If
there are issues in the proposal like small team has not enough
time or could not perform that activity on time, small team
acknowledges the logistics that it needs alternative for that

Vol. 9, No. 6, 2018

task using Alternative[log_id][pid]! channel and goes to Start
state for receiving new or alternative proposal.

After committing small team starts working on the task.
If small team fails to complete its task it sends negative
acknowledgment to the logistics that it needs new contractor
and goes to Fail state waiting for new contractor to be assigned
by the logistics and this is done by using Failed[log_id][pid]!
channel. If the contractor is available and willing to work small
team is assigned that contractor using NewTI[m][pid]? and
NewT2[n][pid]? channels for team 1 and team 2, respectively
otherwise goes to Start state after receiving response from the
logistics using Change? channel.

IV. FUNCTIONAL REQUIREMENTS

According to [3], we extract the following functional
requirements:

R1: Deadlock freedom. No deadlock when a customer
needs to places an order. In other words, deadlock
can occur only when there are no more orders.

R2: If customer sends order, logistic agents eventually
acknowledge it.

R3: A customer is in working state after paying an
order.

R4: If logistics agent is in OrderReceived state if it
receives an order.

RS: Every order decomposed by some logistic agent

results in formulating a small team.

A. Formal Specification of Requirements

In this section, we describe formal specification of the
requirements. The customer process sends order and then
increases its counter, i.e., known as proposalCounter. This
increment continues up to two it means the customer can send
maximum 2 orders. So, according to the R1 requirement, there
is deadlock only when there are no more orders to send by the
customers. The formula of R1 requirement is given below.

A[] deadlock imply (Customer (0) .
proposalCounter==2&&Customer (1) .
proposalCounter==2))

When customer sends order the logistics agent receives and
acknowledges it with a message either the given order is workable or
not. The formula of to represent this requirement is:

E<> forall (i:id_t) forall (j:id_t)

(Customer (i) .Working &&Logistics (]j) .0OrderReceived)

Formula describes that Customer(0) and Customer(1) sends pro-
posal to Logistics(0) and Logistics(1) and vice versa. The logistics
acknowledges the customer.

When customer sends order the logistic agents receives and
acknowledges the customer at that time customer goes to Working
state. For example, when customer(0) sending order definitely goes
to working state. The formula of this requirement is.

forall (i:id_t)Customer (i) .proposal —--—>

Customer (i) .Working

www.ijacsa.thesai.org

414 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

According to the R4 requirement, when a logistics agent receives
proposal it goes to OrderReceived state. The formula of the require-
ment is given below.

forall (i:id_t) Logistics (i) .proposalReceived
——> Logistics (i) .OrderReceived

According to the RS requirement, every order decomposed by
some logistics agent formulates a small team. The formula of this
requirement is given below.

forall (i:id_t) Logistics (i) .ContractorRanked
—-—> Logistics (i) .SmallTeam

V. RESULTS

To analyse features specified in the above section, we use the
verifier, a feature of UPPAAL model checker. Ultimate results are
derived in query section of verifier feature and presented in Table
I. In query section, the feature is written and its consequences are
to be revealed in the status section. The outcomes are in the form
of “Satisfied” and “Not Satisfied” of property. We verify our system
model for,

Total Number of Processes = 3
Order Sending Limit = 2
Activity Demand Limit = 2

TABLE 1. RESULTS

[Requirement [Status [Computational Time |

R1 Not Satisfied, 131 states 0.125 sec
R2 Satisfied, 28,180 KB 0.015 sec
R3 Satisfied, 138 states 0.539 sec
R4 Satisfied, 1623 states 0.562 sec
R5 Not Satisfied, 32,204 KB 0.032 sec

R1: This requirement is violated and not satisfied. According to
the requirement system should be deadlock free or deadlock can occur
only when there are no more orders to send. But there is a scenario
in which this requirement is not satisfied. When a small team needs
alternative there is no more contractor available against that activity
at that state deadlock occurs. The counter example for requirement
R1 generated by UPPAAL is shown in Fig. 8.

RS requirement is not satisfied and according to this requirement
upon decomposing an order by logistic agents, small team is formed.
If a customer needs both activities then upon decomposition if one
small team needs alternative but there contractors are unavailable
pertaining to that activity then small team is not formed, so this re-
quirements is not satisfied. The counter examples for the requirement
is shown in Fig. 9.

VI. LIMITATIONS AND CHALLENGES

There are some obstructions for authentication of intended Agent-
Oriented Supply-Chain Management. We restrict the number of orders
to two. We also restrict the number of activities to two and the
contractors against those activities. A customer can send maximum
two orders and demands for maximum two or minimum one activity.
These limitations reduce the state space because the model generates
a huge state space. The machines are used in our verification have
limited resources for memory and speed. These limitations are also
used due to limited memory of machine. The machine can crash
during execution of query verification phase. We perform some
computations on the machine with 4GB RAM, core i3(3rd Gen)
Laptop.

Vol. 9, No. 6, 2018

C 0) C (1) Logisti Logistics(1) SmallTeam(0) SmallTeam(1) Urgent
(start] Start Start Start -
Proposal[0]
proposalReceived
OrderReceived
Start ContractorRanked
Proposal1]
proposalReceived
Orderfilj[1]
OrderReceived

ContractorRanked

Schedule

Start

_SmaIITeam

[smaliTeam) (schedule] (schedute)

Commited[iog_id][0]|

(Working) (schedute)

\ [tematietiog iar]

[Working] [Working] [Conlraceranked] | SmsIITeaml

[Working] i
I I I I

| SmsIITeaml

Fig. 8. Trace for requirement R1.

VII. CONCLUSION

We formalized Agent-Oriented Supply-Chain Management as
specified in [3] in UPPAAL model checker. We then formalized
functional requirements of the architecture and verified them by model
checking. Results show that the given architecture partially fulfills its
functional requirements. Proof the results are presents in the form for
message sequence charts. The given protocol is verified with limited
number of logistic agents, orders and customers.

REFERENCES

[1] M. C. C. Douglas M. Lambert, “Issues in supply chain management,”
Industrial Marketing Management, vol. 29, p. 19, 2000.

[2] I K. Nirupam Julka, Rajagopalan Srinivasan, “Agent-based supply chain
management-1: framework,” Computers and Chemical Engineering,

vol. 26, p. 15, 2002.

[3] R. T. Mark S. Fox, Mihai Barbuceanu, “Agent-oriented supply-chain
management,” in The International Journal of Flexible Manufacturing
Systems, 12. Kluwer Academic Publishers, 2000, pp. 165-188.

[4] C. Baier, J.-P. Katoen et al, “Principles of model checking, vol.
26202649,” MIT Press Cambridge, vol. 26, p. 58, 2008.

[5] P. R.D’Argenio, J.-P. Katoen, T. C. Ruys, and J. Tretmans, The bounded
retransmission protocol must be on time! Springer, 1997.

[6] H. Lonn and P. Pettersson, “Formal verification of a tdma protocol start-
up mechanism,” in Fault-Tolerant Systems, 1997. Proceedings., Pacific
Rim International Symposium on. 1EEE, 1997, pp. 235-242.

[7]1 P. Pettersson, Modelling and verification of real-time systems using timed
automata: theory and practice. Citeseer, 1999.

www.ijacsa.thesai.org

415|Page

[

() ¢

(1)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Logisti Logistics(1) SmallTeam(0) SmallTeam(1) Urgent
Start Start Start -
Proposal[0]
proposal proposalReceived
Order(ij][0] ‘
Working OrderReceived
Start ContractorRanked
Proposal1]
proposalReceived

Orderfil[1]

OrderReceived

ContractorRanked Start
NegT2[1][1]
Start
NegT1(1](0]
[SmaIITeam] [Proposed] [Proposed]
SmallTeam Schedule

)_id 1)

|

SmallTeam

Commited[iog_id](0]

[Working]

[Working]

[ConlramorRanked]

[SmaIITeam]

| Working]

® @
o e—
= a

Fig. 9. Trace for requirement R7.

(8]

[9]

Vol. 9, No. 6, 2018

W. Yi, P. Pettersson, and M. Daniels, “Automatic verification of real-
time communicating systems by constraint- solving.” in FORTE, vol. 6.
Citeseer, 1994, pp. 243-258.

M. Atif, “Formal modeling and verification of distributed failure de-

tectors,” Faculty of Mathematics and Computer Science, TU/e, vol. 10,
2011.

www.ijacsa.thesai.org

416 |Page

