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Abstract—The article analyzes the difficulties which Bachelor 

Degree in Informatics and Computer Sciences students 

encounter in the process of being trained in applying deductive 

methods of verification and synthesis of procedural programs. 

Education in this field is an important step towards moving from 

classical software engineering to formal software engineering. 

The training in deductive methods is done in the introductory 

courses in programming in some Bulgarian universities. It 

includes: Floyd’s method for proving partial and total 

correctness of flowchart programs; Hoare’s method of 

verification of programs; and Djikstra’s method of transforming 

predicates for verification and synthesis of Algol−like programs. 

The difficulties which occurred during the defining of the 

specification of the program, which is subjected to verification or 

synthesis; choosing a loop invariant and loop termination 

function; finding the weakest precondition; proving the 

formulated verifying conditions, are discussed in the paper. 

Means of overcoming these difficulties is proposed. Conclusions 

are drawn in order to improve the training in the field. Special 

attention is dedicated to motivating the use of specific tools for 

software analysis, such as interactive theorem proving system 

HOL, the software analyzers Frama−C and its WP plug−in, as 

well as the formal language ACSL, which allows formal 

specification of properties of C/C++ programs. 
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methods; automated theorem provers; proof assistants; education 

I. INTRODUCTION 

Applying formal methods of program verification and 
synthesis is an important part of the training in the 
introductory courses of programming in some Bulgarian 
universities. The experience which is shared is gained as a 
result of delivering such training through courses in the 
disciplines Introduction to Programming, Object−Oriented 
Programming and Data Structures for Bachelor’s Degree 
students of specialties Informatics and Computer Sciences of 
Sofia University and Burgas Free University. Education is 
narrowed down to the following methods: Floyd’s method of 
inductive statements for verification of flowchart programs, 
Hoare’s method for verification of while programs, and 
Djikstra’s method for transforming predicates for verification 
and synthesis of Algol−like programs. The limitations in the 
choice of methods of program verification and synthesis   are 
imposed by the consideration that the training under 
investigation is delivered during the first three semesters of 
the Bachelor’s Degree education, therefore the students lack 

sufficient knowledge in discrete mathematics and 
mathematical logic. 

Some elements of the education are presented in the part, 
which is dedicated to the difficulties when applying deductive 
methods. Mere details on the training realization are provided 
in [1]-[4]. 

In [1], the following techniques are described, used in the 
education process in the field: axiomatic semantics, design by 
contract and generalized nets (GNs). Two main training 
approaches are considered. The first one combines the 
axiomatic semantics for proving total correctness of a 
procedural program with execution of the program [4]. The 
second one integrates axiomatic semantics in the GN models 
of the object−oriented programs under verification. The main 
stages of education and the process of education are 
considered. The results of the education are analyzed. 

In [2], Floyd’s method and the method of transforming 
predicates for program verification are presented. The main 
stages and methodology of training in these methods of 
deductive verification are discussed. 

In [3], Hoare’s method, the method of predicate 
transformer for synthesizing programs, runtime verification of 
programs and verification of object−oriented programs via 
developing their GN models are presented. The methodology 
of training in these methods of program verification and 
synthesis is considered. Examples of their application for the 
courses Introduction to Programming, Object−Oriented 
Programming and Data Structures are presented. 

It is noted in the above cited articles that training in the 
field poses certain problems before the students; however, 
these problems has not been analyzed so far.  Current article is 
dedicated to the analysis of the training difficulties; moreover, 
it presents means for overcoming these difficulties. 

Bearing in mind the complexity of the field, the education 
is realized by: using simple examples; introducing the main 
terminology one at a time (e.g. precondition, postcondition, 
loop invariant, program specification); practicing the 
terminology not only during the lectures, but also during the 
seminars and lab sessions; applying deductive methods of 
verification is illustrated through automatized systems (such 
as HOL Interactive Theorem Prover [5] and the software 
analyzers Frama−C [6]); applying knowledge to realizing 
small projects. 
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Note that HOL and Frama−C systems are not introduced, 
due to the limited classes, only the results of their application 
are presented. The main goal is to demonstrate that knowledge 
about formal methods is useful and will support future 
software developers in designing, realizing and testing 
applications. Otherwise, part of the students may lose 
motivation for studying and applying formal methods in their 
practice. 

The work is structured as follows. In Section II of the 
paper the difficulties, which students encounter when: 
defining the specification of the program under verification 
and synthesis; finding the weakest precondition; choosing an 
invariant and a termination function of the loop operator; 
proving the formulated verifying conditions, are analyzed. 
Dealing with difficulties during the training is presented in 
Section III. Some suggestions are given that assist: defining 
the specification; choosing an invariant and a termination 
function of the loop operator and proving the formulated 
verifying conditions. Recommendations for dealing with 
difficulties are described in Section IV. 

II. ANALYSIS OF THE DIFFICULTIES IN APPLYING 

DEDUCTIVE METHODS OF PROGRAM VERIFICATION AND 

SYNTHESIS 

A. Defining the Specification 

Program specification describes what has to be done as a 
result of program execution. At the beginning of the training 
students are introduced to Hoare’s triple {Q} S {R}, where Q 
and R are predicates, and S is a program. This specification 
defines the total correctness of the program S with respect to 
Q and R. This can be interpreted as follows: 

If executing S starts in a state which satisfies the predicate 
Q, what follows is that executing S terminates, after a limited 
time period, in a state which satisfies R. 

The predicate Q is called precondition, and the predicate R 

 postcondition. Defining pre− and postconditions of some 
programs is a great challenge for some students. In most cases, 
these are programs solving tasks on each and existence. 
Proving the correctness of the specification {Q} S {R} through 
applying Manna−Pnueli’s rules [7], as well as proving partial 
correctness of S with respect to Q and R through applying 
Hoare’s rules [8], is quite labor−intensive and demotivates 
even the best students to use the specification and the 
respective rules. That’s why, for educational purposes, the 
more convenient specification, known as transforming 
predicate [9] is applied. 

The transforming predicate Wp(S, R) describes the set of 
all states, so that the start of the program execution from each 
of these states terminates, and the value of the output predicate 
R is true. Wp(S, R) satisfies {Wp(S, R)} S {R}. Hoare’s triple 
{Q} S {R} is equivalent to Q => Wp(S, R). 

Finding Wp(S, R), again, is far from a simple task, in most 
cases. For example, the definition of the transforming 
predicate of the loop operator is nearly unusable, but it helps 
to theoretically justify a methodology for verification and 
synthesis of code fragments containing loop operators [10]. 

That is why identification and check if the chosen 
specification holds is a complex activity. It requires of the 
students to have good knowledge of mathematical logic, as 
well as skills for defining and applying mathematical 
abstractions. This poses the main difficulty for training in the 
field: some of the students of specialty Informatics and 
Computer Sciences lack enough mathematical knowledge and 
skills. The complexity of the matter requires high motivation 
for applying these methods. However, first year students have 
little practical experience, they usually do not recognize the 
crucial importance of the formal methods for ensuring 
software quality. This demotivates them to apply any formal 
methods of software verification and synthesis. The lack of 
motivation is a great obstacle for the training in the field. 

B. Choosing an Invariant and Termination Function for the 

Loop Operator 

In order to verify a program formally, the following two 
tasks are to be solved: 

- proving the partial correctness of the program with 
respect to given input/output specification; 

- proving that the program terminates. 

In order to solve these, the application of one of the above 
mentioned methods of deductive program verification and 
synthesis is discussed in the paper. The two tasks cannot be 
solved by any of these methods without finding and applying 
suitable invariants and termination functions of the loop 
operators of the program. 

An invariant of a loop operator is a logical statement, 
which holds before the execution and after each execution of 
the loop operator. 

The loop termination function is used to prove that the 
respective loop terminates. It gives the upper limit of the 
iterations to be completed by the end of the loop execution. 
The latter can be used to estimate the time left until the 
program ends. 

In most cases, both loop invariant and loop termination 
function are not obvious. The task for correctly identifying 
them is of great importance for automatizing program 
verification. Solving this task is difficult, having in mind the 
volume and complexity of contemporary software, and the 
software realized for educational purposes, respectively. 
During the training process on finding the invariant of a loop 
operator, Gries’s methodology [10] is applied. The loop 
invariant is seen as a weaker postcondition. The ways for 
finding a condition weaker than the postcondition, which are 
most commonly applied for educational purposes in finding 
the invariant of a loop are: 

 deleting a conjunctive member; 

 replacing a constant by a variable; 

 enlarging the range of a variable. 

Using only one of these three methods for generating a 
weaker postcondition sometimes does not lead to identifying a 
suitable invariant. In this case, a combination of these methods 
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is performed, as well as a combination of the precondition and 
postcondition. 

Finding an invariant these ways is a labor−intense work. In 
addition, some questions arise, such as: Which conjunctive 
member of the postcondition to be eliminated, so a suitable 
invariant to be found? In case of more constants, which one to 
be exchanged for a variable? What limits the variable area to 
be increased to, and whose variable area to be increased? 
Which methods to be combined? Which parts of the pre− and 
postconditions to be combined? 

Finding the respective invariant is related to checking 
several logical conditions, which poses additional difficulties. 

For example, in order for P to be an invariant of the while 
loop of the program for finding the factorial of the natural 
number x (the example traditionally used as a loop containing 
program fragment) 

y = 1; z = 0; 

while (z != x) 

{ z++; 

   y = y*z; 

} 
P must satisfy the following conditions: 

{ P  z  x } z++; y = y*z { P } 

 y = 1  z = 0  => P 

 P   (z  x)  => y = x! 

where y = x! is the postcondition. 

In most cases, checking for meeting these conditions 
proves to be a complex task. 

In order to find the loop termination function, an 
assumption can be applied that it gives the upper bound on 
how many iterations remain to be executed before loop 
termination occurs. The invariant of the loop operator suggests 
the definition of its termination function in almost all 
applications developed by the students. Therefore, the correct 
identification of an invariant is closely related to the choice of 
a loop termination function. Thus, the difficulties in finding 
the invariant also reflect on finding the loop termination 
function. 

C. Proving the Formulated Verifying Conditions 

Although proving the verifying conditions is narrowed 
down to proving the truthfulness of a system of implications, 
proving these implications manually, more often than not, is 
not an easy task. Even educational examples require the 
students to have basic knowledge in discrete mathematics and 
mathematical logic. They should also be able to work with 
propositions, in order to perform equivalence transformations 
(to know the laws of equivalence; the rules of substitution and 
transitivity). They have to have also at least basic knowledge 
on deductive proofs (inference rules; proofs and subproofs), 
and on predicates (extending the range of a state; 
quantification; free and bound identifiers; some theorems 
about textual substitution and states). In addition, they have to 
be aware of notations and conventions for arrays. 

Supposedly, a great deal of this knowledge is to be 
acquired as a result of studying the following disciplines: 
Discrete Mathematics; Languages, Automata and 
Calculability; Introduction to Software Engineering; Algebra; 
Geometry and Mathematical Analysis, which are being taught 
in parallel with the courses in programming. However, a large 
number of the students have a different predisposition and are 
not motivated enough to study mathematics disciplines, as 
stated above. 

Apart from the difficulties identified earlier, the following 
are of importance as well: 

 Lack of environments for teaching in the field. There 
are not enough tools for automatizing the process of 
applying deductive methods, which to be applicable to 
training beginner programmers. Environments are 
needed to facilitate students in applying deductive 
methods of verification. 

 There are no adequate didactic materials to support such 
education. 

 The textbooks on the matter are not enough. 

III. DEALING WITH DIFFICULTIES DURING THE TRAINING 

Our experience in teaching formal methods at academic 
level, in addition to our observations on how graduates apply 
the knowledge in the field in their practice, made us believe 
that education in formal methods of verification and synthesis 
is useful and needed. It is only through training that these 
methods are applied in software industry. In order for this to 
be successful, measures for overcoming the difficulties 
described in Section II have to be taken. 

Some suggestions for coping with these difficulties are 
proposed below. 

A. Defining the Specification 

In order to tackle the problems with defining the 
specification, the students need to get acquainted and are 
taught to apply some specification language. The experience 
with ANSI/ISO C Specification Language (ACSL) [11]-[13] 
provides ample evidence in favor of recommending it for 
applying formal methods of verification of C and some C++ 
programs. This language allows for relatively easily 
specifying properties of C and some C++ programs, after 
which these properties to be formally verified. ACSL is a 
Behavioral Interface Specification Language implemented in 
the Frama−C framework WP plug−in. Frama−C is an open 
code platform, analyzing source code written in the 
programming language C. It combines the following analysis 
techniques in a common framework: Frama−C’s WP plug−in, 
Frama−C’s value analysis plug−in, Frama−C’s RTE plug−in 
and Frama−C’s E−ACSL plug−in. Frama−C’s WP plug−in is 
suitable for education purposes. 

The Frama−C/WP plug−in enables deductive verification 
of C programs that have been annotated with ACSL. This 
plug−in uses Hoare−style weakest precondition computations 
to formally prove ACSL properties of a C code. Verification 
conditions are generated and submitted to external automatic 
theorem provers or interactive proof assistants [13]. 
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By using the formal language ACSL, the software 
analyzers Frama−C and Frama−C’s WP plug−in, defining of 
the program specification by the student will be narrowed 
down to: defining program precondition and postcondition, of 
the invariants and termination functions of the loop operators, 
used in the program. Thus, the learner will not have to find the 
transforming predicate, as well as to prove the formulated 
statements. 

Fig. 1 shows the definition of the function sqrt2, which 
finds the biggest integer, whose square is not bigger that n (n 
is a given non−negative integer). The definition is annotated 
according to the specification, given in ACSL language. 

The precondition (INT_MAX/2 > n >= 0) is given via the 
requires clause, аnd the postcondition (\result >= 0 && \result 

* \result <= n < (\result + 1) * (\result + 1))  through the 
ensures clause. The invariant (a >= 0 && a * a <= n) and the 
loop termination function (n – a * a) are given by the clauses 
loop invariant and loop variant, respectively (see Fig. 1). 

The result of realizing this specification through the WP 
plug−in of Frama−C (see Fig. 2) shows that 11 goals are 
achieved (5 goals are simplifications, done via the simplifier 
Qed that is integrated into Frama−C/WP, and 6 goals are 
proofs, done via the SMT solver Alt−Ergo). 

 

Fig. 1. Function sqrt2, specified through ACSL. 

 
Fig. 2. Results of analysis of the function sqrt2 via Frama−C. 

B. Choosing an Invariant and a Termination Function of the 

Loop Operator 

As the choice of an invariant of the loop operator is related 
to proving conditions, a means of facilitating the solving of 
this task is using automated theorem provers. Some of the 
most successful systems for theorem proving are: HOL Light, 
Mizar, ProofPower, Isabelle and Coq. An experience 
regarding formal verification of procedural and 
object−oriented programs using the theorem prover system 
HOL is shared in [14]. Through this theorem prover, it can be 
checked if the predicate P, chosen to be an invariant of the 
operator for the loop while (B) S, satisfies the conditions for an 
invariant: 

{ P  B } S { P } 

Q => P 

P   B  => R 

Where Q is the precondition and R is the postcondition of 
the loop operator. It also can be used in proving if the loop 
termination function t satisfies the following conditions: 

P  B => t > 0 and 

P  B => Wp(t1 = t; S, t < t1) 

Where t1 is the value of t before executing the body S of 
the loop. 

Another suitable module for finding a loop invariant is 
Jessie, complemented by Apron library. The module Jessie is 
included in Frama−C. 

In order to find a loop termination function, the following 
strategy can be applied: wording down the functions of the 
loop termination function; formalizing the wording as a 
mathematical expression; checking if the mathematical 
expression satisfies the formal requirements for a loop 
termination function. It is recommended the checking to be 
performed both manually and via any of the automatic 
theorem provers. 

C. Proving the Formulated Verifying Conditions 

In order to prove the verifying conditions, the HOL 
Interactive Theorem Prover, as well as some of the theorem 
provers Qed, CVC4, Z3, Alt−Ergo, CVC3, E and Coq, which 
are supported by the Software Analyzers Frama−C can be 
applied. 

IV. RECOMMENDATIONS FOR DEALING WITH DIFFICULTIES 

The experience gained as a result of the training justifies 
the formulation of the following recommendations for dealing 
with difficulties in applying deductive methods of program 
verification and synthesis: 

 Manual application with automated tools to be 
integrated. Thus, part of the problems will be avoided, 
and a better balance between simplicity, visualization 
and precision will be maintained. 

 Programming environments, adequate to the 
educational goals, to be developed. 
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 Student motivation regarding studying the field to be 
increased. To this end, adequate samples to be 
designed, through which the advantages of deductive 
methods for ensuring the quality of industrial software 
and for decreasing the price of software project 
realization to be demonstrated. 

 More efficient educational methods in the field to be 
introduced [15]. In addition to teaching through 
examples [16] and project−based learning approach 
[17], it is essential the training to be organized with 
respect to student knowledge level. For each level, 
appropriate methods to be chosen and applied. 

 The teaching experience regarding the difficulties 
encountered during such education to be more widely 
discussed. The quality of education to be unified by 
employing cloud management [18]. 

 Cloud−based educational networks to be established in 
order to facilitate trans−institutional collaboration on 
creating and applying educational products and services 
in the field of programming, and formal methods of 
verification and synthesis, in particular [19]. 

 Appropriate formalization of programming language 
teaching to be made [20]. 

 Appropriate didactic materials on the matter to be 
designed to support the training. 

 Studying the field to be given the status of a separate 
core discipline. Thus, each student will have to study 
and apply formal methods. 

V. CONCLUSION 

Education in the field of applying formal methods for 
developing correct software is the most efficient way of 
implementing these methods in software industry. The reason 
to state this is that a relatively large portion of the trained 
students continue using these methods in their further study at 
both Bachelor and Master degrees. This tendency is especially 
visible during courses such as Numerical Methods and 
Robotics [21]. Some of the graduate students who have 
completed this training also try to apply it in their practice as 
software specialists. Others continue their study at a PhD level 
in the field. 

In order to overcome the challenges during the training in 
deductive methods of program verification and synthesis,  аn 
educational environment for verification of procedural and 
object−oriented programs is under development [22]. The 
environment is based on GNs and only provides tools for 
training in program verification so far. Future work includes 
expanding education framework with tools for supporting 
program synthesis, as well as integrating automatic systems 
for theorem proving in it. 
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