
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 7, 2018

18 | P a g e

www.ijacsa.thesai.org

Training Difficulties in Deductive Methods of

Verification and Synthesis of Program

Magdalina Todorova

Faculty of Mathematics and Informatics

Sofia University “St. Kl. Ohridski”

Sofia, Bulgaria

Daniela Orozova

Faculty of Computer Science and Engineering

Burgas Free University

Burgas, Bulgaria

Abstract—The article analyzes the difficulties which Bachelor

Degree in Informatics and Computer Sciences students

encounter in the process of being trained in applying deductive

methods of verification and synthesis of procedural programs.

Education in this field is an important step towards moving from

classical software engineering to formal software engineering.

The training in deductive methods is done in the introductory

courses in programming in some Bulgarian universities. It

includes: Floyd’s method for proving partial and total

correctness of flowchart programs; Hoare’s method of

verification of programs; and Djikstra’s method of transforming

predicates for verification and synthesis of Algol−like programs.

The difficulties which occurred during the defining of the

specification of the program, which is subjected to verification or

synthesis; choosing a loop invariant and loop termination

function; finding the weakest precondition; proving the

formulated verifying conditions, are discussed in the paper.

Means of overcoming these difficulties is proposed. Conclusions

are drawn in order to improve the training in the field. Special

attention is dedicated to motivating the use of specific tools for

software analysis, such as interactive theorem proving system

HOL, the software analyzers Frama−C and its WP plug−in, as

well as the formal language ACSL, which allows formal

specification of properties of C/C++ programs.

Keywords—Program verification; deductive verification

methods; automated theorem provers; proof assistants; education

I. INTRODUCTION

Applying formal methods of program verification and
synthesis is an important part of the training in the
introductory courses of programming in some Bulgarian
universities. The experience which is shared is gained as a
result of delivering such training through courses in the
disciplines Introduction to Programming, Object−Oriented
Programming and Data Structures for Bachelor’s Degree
students of specialties Informatics and Computer Sciences of
Sofia University and Burgas Free University. Education is
narrowed down to the following methods: Floyd’s method of
inductive statements for verification of flowchart programs,
Hoare’s method for verification of while programs, and
Djikstra’s method for transforming predicates for verification
and synthesis of Algol−like programs. The limitations in the
choice of methods of program verification and synthesis are
imposed by the consideration that the training under
investigation is delivered during the first three semesters of
the Bachelor’s Degree education, therefore the students lack

sufficient knowledge in discrete mathematics and
mathematical logic.

Some elements of the education are presented in the part,
which is dedicated to the difficulties when applying deductive
methods. Mere details on the training realization are provided
in [1]-[4].

In [1], the following techniques are described, used in the
education process in the field: axiomatic semantics, design by
contract and generalized nets (GNs). Two main training
approaches are considered. The first one combines the
axiomatic semantics for proving total correctness of a
procedural program with execution of the program [4]. The
second one integrates axiomatic semantics in the GN models
of the object−oriented programs under verification. The main
stages of education and the process of education are
considered. The results of the education are analyzed.

In [2], Floyd’s method and the method of transforming
predicates for program verification are presented. The main
stages and methodology of training in these methods of
deductive verification are discussed.

In [3], Hoare’s method, the method of predicate
transformer for synthesizing programs, runtime verification of
programs and verification of object−oriented programs via
developing their GN models are presented. The methodology
of training in these methods of program verification and
synthesis is considered. Examples of their application for the
courses Introduction to Programming, Object−Oriented
Programming and Data Structures are presented.

It is noted in the above cited articles that training in the
field poses certain problems before the students; however,
these problems has not been analyzed so far. Current article is
dedicated to the analysis of the training difficulties; moreover,
it presents means for overcoming these difficulties.

Bearing in mind the complexity of the field, the education
is realized by: using simple examples; introducing the main
terminology one at a time (e.g. precondition, postcondition,
loop invariant, program specification); practicing the
terminology not only during the lectures, but also during the
seminars and lab sessions; applying deductive methods of
verification is illustrated through automatized systems (such
as HOL Interactive Theorem Prover [5] and the software
analyzers Frama−C [6]); applying knowledge to realizing
small projects.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 7, 2018

19 | P a g e

www.ijacsa.thesai.org

Note that HOL and Frama−C systems are not introduced,
due to the limited classes, only the results of their application
are presented. The main goal is to demonstrate that knowledge
about formal methods is useful and will support future
software developers in designing, realizing and testing
applications. Otherwise, part of the students may lose
motivation for studying and applying formal methods in their
practice.

The work is structured as follows. In Section II of the
paper the difficulties, which students encounter when:
defining the specification of the program under verification
and synthesis; finding the weakest precondition; choosing an
invariant and a termination function of the loop operator;
proving the formulated verifying conditions, are analyzed.
Dealing with difficulties during the training is presented in
Section III. Some suggestions are given that assist: defining
the specification; choosing an invariant and a termination
function of the loop operator and proving the formulated
verifying conditions. Recommendations for dealing with
difficulties are described in Section IV.

II. ANALYSIS OF THE DIFFICULTIES IN APPLYING

DEDUCTIVE METHODS OF PROGRAM VERIFICATION AND

SYNTHESIS

A. Defining the Specification

Program specification describes what has to be done as a
result of program execution. At the beginning of the training
students are introduced to Hoare’s triple {Q} S {R}, where Q
and R are predicates, and S is a program. This specification
defines the total correctness of the program S with respect to
Q and R. This can be interpreted as follows:

If executing S starts in a state which satisfies the predicate
Q, what follows is that executing S terminates, after a limited
time period, in a state which satisfies R.

The predicate Q is called precondition, and the predicate R

 postcondition. Defining pre− and postconditions of some
programs is a great challenge for some students. In most cases,
these are programs solving tasks on each and existence.
Proving the correctness of the specification {Q} S {R} through
applying Manna−Pnueli’s rules [7], as well as proving partial
correctness of S with respect to Q and R through applying
Hoare’s rules [8], is quite labor−intensive and demotivates
even the best students to use the specification and the
respective rules. That’s why, for educational purposes, the
more convenient specification, known as transforming
predicate [9] is applied.

The transforming predicate Wp(S, R) describes the set of
all states, so that the start of the program execution from each
of these states terminates, and the value of the output predicate
R is true. Wp(S, R) satisfies {Wp(S, R)} S {R}. Hoare’s triple
{Q} S {R} is equivalent to Q => Wp(S, R).

Finding Wp(S, R), again, is far from a simple task, in most
cases. For example, the definition of the transforming
predicate of the loop operator is nearly unusable, but it helps
to theoretically justify a methodology for verification and
synthesis of code fragments containing loop operators [10].

That is why identification and check if the chosen
specification holds is a complex activity. It requires of the
students to have good knowledge of mathematical logic, as
well as skills for defining and applying mathematical
abstractions. This poses the main difficulty for training in the
field: some of the students of specialty Informatics and
Computer Sciences lack enough mathematical knowledge and
skills. The complexity of the matter requires high motivation
for applying these methods. However, first year students have
little practical experience, they usually do not recognize the
crucial importance of the formal methods for ensuring
software quality. This demotivates them to apply any formal
methods of software verification and synthesis. The lack of
motivation is a great obstacle for the training in the field.

B. Choosing an Invariant and Termination Function for the

Loop Operator

In order to verify a program formally, the following two
tasks are to be solved:

- proving the partial correctness of the program with
respect to given input/output specification;

- proving that the program terminates.

In order to solve these, the application of one of the above
mentioned methods of deductive program verification and
synthesis is discussed in the paper. The two tasks cannot be
solved by any of these methods without finding and applying
suitable invariants and termination functions of the loop
operators of the program.

An invariant of a loop operator is a logical statement,
which holds before the execution and after each execution of
the loop operator.

The loop termination function is used to prove that the
respective loop terminates. It gives the upper limit of the
iterations to be completed by the end of the loop execution.
The latter can be used to estimate the time left until the
program ends.

In most cases, both loop invariant and loop termination
function are not obvious. The task for correctly identifying
them is of great importance for automatizing program
verification. Solving this task is difficult, having in mind the
volume and complexity of contemporary software, and the
software realized for educational purposes, respectively.
During the training process on finding the invariant of a loop
operator, Gries’s methodology [10] is applied. The loop
invariant is seen as a weaker postcondition. The ways for
finding a condition weaker than the postcondition, which are
most commonly applied for educational purposes in finding
the invariant of a loop are:

 deleting a conjunctive member;

 replacing a constant by a variable;

 enlarging the range of a variable.

Using only one of these three methods for generating a
weaker postcondition sometimes does not lead to identifying a
suitable invariant. In this case, a combination of these methods

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 7, 2018

20 | P a g e

www.ijacsa.thesai.org

is performed, as well as a combination of the precondition and
postcondition.

Finding an invariant these ways is a labor−intense work. In
addition, some questions arise, such as: Which conjunctive
member of the postcondition to be eliminated, so a suitable
invariant to be found? In case of more constants, which one to
be exchanged for a variable? What limits the variable area to
be increased to, and whose variable area to be increased?
Which methods to be combined? Which parts of the pre− and
postconditions to be combined?

Finding the respective invariant is related to checking
several logical conditions, which poses additional difficulties.

For example, in order for P to be an invariant of the while
loop of the program for finding the factorial of the natural
number x (the example traditionally used as a loop containing
program fragment)

y = 1; z = 0;

while (z != x)

{ z++;

 y = y*z;

}
P must satisfy the following conditions:

{ P  z  x } z++; y = y*z { P }

 y = 1  z = 0 => P

 P   (z  x) => y = x!

where y = x! is the postcondition.

In most cases, checking for meeting these conditions
proves to be a complex task.

In order to find the loop termination function, an
assumption can be applied that it gives the upper bound on
how many iterations remain to be executed before loop
termination occurs. The invariant of the loop operator suggests
the definition of its termination function in almost all
applications developed by the students. Therefore, the correct
identification of an invariant is closely related to the choice of
a loop termination function. Thus, the difficulties in finding
the invariant also reflect on finding the loop termination
function.

C. Proving the Formulated Verifying Conditions

Although proving the verifying conditions is narrowed
down to proving the truthfulness of a system of implications,
proving these implications manually, more often than not, is
not an easy task. Even educational examples require the
students to have basic knowledge in discrete mathematics and
mathematical logic. They should also be able to work with
propositions, in order to perform equivalence transformations
(to know the laws of equivalence; the rules of substitution and
transitivity). They have to have also at least basic knowledge
on deductive proofs (inference rules; proofs and subproofs),
and on predicates (extending the range of a state;
quantification; free and bound identifiers; some theorems
about textual substitution and states). In addition, they have to
be aware of notations and conventions for arrays.

Supposedly, a great deal of this knowledge is to be
acquired as a result of studying the following disciplines:
Discrete Mathematics; Languages, Automata and
Calculability; Introduction to Software Engineering; Algebra;
Geometry and Mathematical Analysis, which are being taught
in parallel with the courses in programming. However, a large
number of the students have a different predisposition and are
not motivated enough to study mathematics disciplines, as
stated above.

Apart from the difficulties identified earlier, the following
are of importance as well:

 Lack of environments for teaching in the field. There
are not enough tools for automatizing the process of
applying deductive methods, which to be applicable to
training beginner programmers. Environments are
needed to facilitate students in applying deductive
methods of verification.

 There are no adequate didactic materials to support such
education.

 The textbooks on the matter are not enough.

III. DEALING WITH DIFFICULTIES DURING THE TRAINING

Our experience in teaching formal methods at academic
level, in addition to our observations on how graduates apply
the knowledge in the field in their practice, made us believe
that education in formal methods of verification and synthesis
is useful and needed. It is only through training that these
methods are applied in software industry. In order for this to
be successful, measures for overcoming the difficulties
described in Section II have to be taken.

Some suggestions for coping with these difficulties are
proposed below.

A. Defining the Specification

In order to tackle the problems with defining the
specification, the students need to get acquainted and are
taught to apply some specification language. The experience
with ANSI/ISO C Specification Language (ACSL) [11]-[13]
provides ample evidence in favor of recommending it for
applying formal methods of verification of C and some C++
programs. This language allows for relatively easily
specifying properties of C and some C++ programs, after
which these properties to be formally verified. ACSL is a
Behavioral Interface Specification Language implemented in
the Frama−C framework WP plug−in. Frama−C is an open
code platform, analyzing source code written in the
programming language C. It combines the following analysis
techniques in a common framework: Frama−C’s WP plug−in,
Frama−C’s value analysis plug−in, Frama−C’s RTE plug−in
and Frama−C’s E−ACSL plug−in. Frama−C’s WP plug−in is
suitable for education purposes.

The Frama−C/WP plug−in enables deductive verification
of C programs that have been annotated with ACSL. This
plug−in uses Hoare−style weakest precondition computations
to formally prove ACSL properties of a C code. Verification
conditions are generated and submitted to external automatic
theorem provers or interactive proof assistants [13].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 7, 2018

21 | P a g e

www.ijacsa.thesai.org

By using the formal language ACSL, the software
analyzers Frama−C and Frama−C’s WP plug−in, defining of
the program specification by the student will be narrowed
down to: defining program precondition and postcondition, of
the invariants and termination functions of the loop operators,
used in the program. Thus, the learner will not have to find the
transforming predicate, as well as to prove the formulated
statements.

Fig. 1 shows the definition of the function sqrt2, which
finds the biggest integer, whose square is not bigger that n (n
is a given non−negative integer). The definition is annotated
according to the specification, given in ACSL language.

The precondition (INT_MAX/2 > n >= 0) is given via the
requires clause, аnd the postcondition (\result >= 0 && \result

* \result <= n < (\result + 1) * (\result + 1))  through the
ensures clause. The invariant (a >= 0 && a * a <= n) and the
loop termination function (n – a * a) are given by the clauses
loop invariant and loop variant, respectively (see Fig. 1).

The result of realizing this specification through the WP
plug−in of Frama−C (see Fig. 2) shows that 11 goals are
achieved (5 goals are simplifications, done via the simplifier
Qed that is integrated into Frama−C/WP, and 6 goals are
proofs, done via the SMT solver Alt−Ergo).

Fig. 1. Function sqrt2, specified through ACSL.

Fig. 2. Results of analysis of the function sqrt2 via Frama−C.

B. Choosing an Invariant and a Termination Function of the

Loop Operator

As the choice of an invariant of the loop operator is related
to proving conditions, a means of facilitating the solving of
this task is using automated theorem provers. Some of the
most successful systems for theorem proving are: HOL Light,
Mizar, ProofPower, Isabelle and Coq. An experience
regarding formal verification of procedural and
object−oriented programs using the theorem prover system
HOL is shared in [14]. Through this theorem prover, it can be
checked if the predicate P, chosen to be an invariant of the
operator for the loop while (B) S, satisfies the conditions for an
invariant:

{ P  B } S { P }

Q => P

P   B => R

Where Q is the precondition and R is the postcondition of
the loop operator. It also can be used in proving if the loop
termination function t satisfies the following conditions:

P  B => t > 0 and

P  B => Wp(t1 = t; S, t < t1)

Where t1 is the value of t before executing the body S of
the loop.

Another suitable module for finding a loop invariant is
Jessie, complemented by Apron library. The module Jessie is
included in Frama−C.

In order to find a loop termination function, the following
strategy can be applied: wording down the functions of the
loop termination function; formalizing the wording as a
mathematical expression; checking if the mathematical
expression satisfies the formal requirements for a loop
termination function. It is recommended the checking to be
performed both manually and via any of the automatic
theorem provers.

C. Proving the Formulated Verifying Conditions

In order to prove the verifying conditions, the HOL
Interactive Theorem Prover, as well as some of the theorem
provers Qed, CVC4, Z3, Alt−Ergo, CVC3, E and Coq, which
are supported by the Software Analyzers Frama−C can be
applied.

IV. RECOMMENDATIONS FOR DEALING WITH DIFFICULTIES

The experience gained as a result of the training justifies
the formulation of the following recommendations for dealing
with difficulties in applying deductive methods of program
verification and synthesis:

 Manual application with automated tools to be
integrated. Thus, part of the problems will be avoided,
and a better balance between simplicity, visualization
and precision will be maintained.

 Programming environments, adequate to the
educational goals, to be developed.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 7, 2018

22 | P a g e

www.ijacsa.thesai.org

 Student motivation regarding studying the field to be
increased. To this end, adequate samples to be
designed, through which the advantages of deductive
methods for ensuring the quality of industrial software
and for decreasing the price of software project
realization to be demonstrated.

 More efficient educational methods in the field to be
introduced [15]. In addition to teaching through
examples [16] and project−based learning approach
[17], it is essential the training to be organized with
respect to student knowledge level. For each level,
appropriate methods to be chosen and applied.

 The teaching experience regarding the difficulties
encountered during such education to be more widely
discussed. The quality of education to be unified by
employing cloud management [18].

 Cloud−based educational networks to be established in
order to facilitate trans−institutional collaboration on
creating and applying educational products and services
in the field of programming, and formal methods of
verification and synthesis, in particular [19].

 Appropriate formalization of programming language
teaching to be made [20].

 Appropriate didactic materials on the matter to be
designed to support the training.

 Studying the field to be given the status of a separate
core discipline. Thus, each student will have to study
and apply formal methods.

V. CONCLUSION

Education in the field of applying formal methods for
developing correct software is the most efficient way of
implementing these methods in software industry. The reason
to state this is that a relatively large portion of the trained
students continue using these methods in their further study at
both Bachelor and Master degrees. This tendency is especially
visible during courses such as Numerical Methods and
Robotics [21]. Some of the graduate students who have
completed this training also try to apply it in their practice as
software specialists. Others continue their study at a PhD level
in the field.

In order to overcome the challenges during the training in
deductive methods of program verification and synthesis, аn
educational environment for verification of procedural and
object−oriented programs is under development [22]. The
environment is based on GNs and only provides tools for
training in program verification so far. Future work includes
expanding education framework with tools for supporting
program synthesis, as well as integrating automatic systems
for theorem proving in it.

REFERENCES

[1] M. Todorova, “Applying program verification methods in software
specialists education,” Proceedings of the 7th International Technology,

Education and Development Conference, Valencia, Spain, pp.
6260−6270, 2013.

[2] M. Todorova and D. Orozova, “Applying deductive verification to
bachelor degree courses in programming,” Proceedings of the the 10th
Annual International Conference of Education, Research and
Innovation, Seville, 16−18 November, 2017, pp. 5055−5065, 2017.

[3] M. Todorova and D. Orozova, “How to build up contemporary computer
science specialists – formal methods of verification and synthsis of
programs in introduction courses on programming,” Proceedings of the
9th annual International Conference of Education, Research and
Innovation, Seville, 14th, 15−16 November, 2016, pp. 4249−4256,
2016.

[4] M. Todorova and P. Armyanov, “Runtime Verification of computer
programs and its application in programming education,” Global
Science and Technology Forum: International Journal of Mathematics,
Statistics and Operations Research, vol. 1, No. 1, pp. 105−110, 2012.

[5] Realease Notes for HOL4, Kananaskis−11, https://hol−theorem−prover.
org/kananaskis−11.release.html, 2012.

[6] Frama−C Software Analyzers, https://frama−c.com/index.html

[7] Z. Manna, Mathematical Theory of Informatics, Science and Art
Publishing House, Sofia, 1983.

[8] C. A. R. Hoare, “An axiomatic basis for computer programming,”
Communication of the ACM, vol. 12, No 10, 1969.

[9] E. Dijkstra, Discipline of Pprogramming, Prentice Hall, 1976.

[10] D. Gries, The Science of Programming, Springer−Verlag, New York,
Heidelwerg, Berlin, 1981.

[11] V. Prevosto, ACSL Mini−Tutorial, CEA List, INRIA Centre de
Recherche SACLAY – ILE de France.

[12] P. Baudin, J.Filliatre, C. Marche, B. Monate, Y. Moy, and V. Prevosto,
ACSL: ANSI/ISO C Specification Language. Preliminary Design,
version 1.4, http: //www.frama-c.cea.fr/ download/acsl_1.4.pdf, 2008.

[13] J. Burghardt, R. Clausecker, J. Gerlach, and H. Pohl, ACSL By
Example. Towards a Verified C Standard Library, Version 14.1.1 for
Frama−C (Silicon), 2017.

[14] M. Todorova, “Formal verification of procedural and object−oriented
programs using the HOL theorem proof system,” Automatics and
Informatics, John Atanasoff Union of Automatics and Informatics, ISSN
0861–7562, vol. XLII, No. 2, pp. 25−27, 2008.

[15] P. Armyanov, A. Semerdzhiev, K. Georgiev and T. Trifonov, “The
effects of progressive evaluation and obligatory homeworks on student
motivation and achievements,” Proceedings of the 12th International
Technology, Education and Development Conference, Valencia, Spain,
2018, pp. 618−625, 2018.

[16] I. Donchev, “An approach to teaching object−oriented programming
concepts by examples,” Thirty Seventh Spring Conference of the Union
of Bulgarian Mathematicians, Borovets, April 2−6, 2008, pp. 335−341,
2008 (in Bulgarian).

[17] K. Kaloyanova, “An implementation of the project approach in teaching
information systems courses,” 8th International Technology, Education
and Development Conference, Valencia, Spain, pp. 7090−7096, 2014.

[18] S. Hadzhikoleva and E. Hadzhikolev, “QAHEaaS or quality assurance in
higher education as a service,” Tem Journal, vol. 5, No.3, 2016, pp.
363−370, ISSN: 2217−8309.

[19] S. Hadzhikoleva, E. Hadzhikolev, S. Cheresharov, and L. Yovkov,
“Towards building cloud education networks,” Tem Journal, vol.7,
No.1, 2018, pp. 219−224, ISSN: 2217−8309.

[20] V. Dimitrov, Deriving semantics from WS−BPEL specifications of
parallel business processes on an example, Computer Research and
Modeling, vol. 7, No 3, pp. 445−454, 2015.

[21] I. Patias and V. Georgiev, Design of Robotic Systems, St Kliment
Ohridski University Press, ISBN 978−954−07−4207−6, 2017.

[22] M. Todorova and K. Kanev, “Educational framework for verification of
object−oriented programs,” The Joint International Conference on
Human−Centered Computer Environments HCCE’2012, Hamamatsu,
Japan, pp. 23−27, 2012.

