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Abstract—In this paper, the control of linear discrete-time
Varying Single-Input Single-Output systems is tackled. By using
flatness theory combined with a dead-beat observer, a two degree
of freedom controller is designed with high performances in
terms of trajectory tracking. The aim of this work is to avoid
the choice of closed loop poles in linear discrete-time varying
framework which build a very serious problem in system control.
The effectiveness of this control law is highlighted by simulation
results.
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I. INTRODUCTION

The theory of linear time-invariant systems gives a wide
range of design methods and solutions to control problems
including all kinds of techniques such as state feedback
controllers and observers, Kalman filters, H2 control and H∞
control. Since then, researchers have kept on making efforts
to extend the previous systems control approaches to time-
varying systems and sampled-data systems.

LTV (Linear Time Varying) systems are of a great interest
because of the fact that time invariant nonlinear systems can
be approximated by LTV systems around desired trajectories
after there linearization. However, a fundamental part in the
study of LTV systems is insured by the state transition matrix
noted φ, which can be computed as the sum of the Peano-
Baker series. We can note here that not all arguments and
assumptions used of time-invariant systems are useful in time-
varying framework. To extend them, time-varying systems are
examined carefully on their controllability and stability.

Moreover, many control design approaches use LTV sys-
tems, one of the most important way of systems control is
SMC (Sliding mode control) which is very used in the case of
dynamic uncertain systems [1]. Furthermore, we can evaluate
Back Stepping method which used to aim the objective of
stabilizing nonlinear dynamic systems leading to an LTV
system after linearization [2]. Besides, we find fuzzy control
operating nonlinear systems to make nonlinear controllers via
the use of heuristic information [3]. Among these control
design approaches, flatness-based control remains the most
suitable method in trajectory tracking, then in the rest of the
paper, we are interested to this kind of controller in the LTV
case.

Previously, it is shown that flatness property considerably
simplifies the 2DOF (Two Degree of Freedom) controllers
design for continuous-time SISO (Single-Input Single-Output)
systems for LTV framework [4], [5]. In these works, the
main feature of this flatness approach for 2DOF controllers
design, using flatness-based control and dead-beat observer, is
to avoid the choice of closed loop poles and no need to solve
diophantine equation any more. In this design the closed loop
dynamics are related to the chosen tracking dynamics.

This approach was extended to discrete-time framework for
LTI SISO [6], [7] and LTI MIMO (Multiple-Input Multiple-
Output) systems [8], [9], [10] . This paper extend the previous
approaches to deal with LTV flatness-based control in SISO
discrete-time framework.

This paper is organized as follows: In Section II, some
preliminaries are presented. Then in Section III, the definition
of the canonical controllable form in discrete-time SISO LTV
framework is given. Moreover, in Section IV, the new approach
of control design is developed. In Section V, effectiveness of
this control law is illustrated using an academic discrete-time
SISO system.

In the following, we will develop the paper in a discrete-
time formulation, using the shift forward operator q and the
delay operator q−1.

II. PRELIMINARIES

Introducing a given problem concerning LTV systems, start
generally by results given by LTI techniques and trying to
adapt it in the new context. Flatness-based control is introduced
and developed by Fliess and co-researchers [11] and used by
many authors, firstly in the LTI framework then in the LTV
one.

This work deals with flatness-based control in LTV
discrete-time framework. So to aim this objective a canonical
controllable form must be built and is exploited in the proposed
control law design.

A. Canonical controllable form for LTV discrete-time SISO
systems

Canonical forms are widely used in control theory. In this
section, the discrete-time LTV controllable canonical form is
presented [12].
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Considering the following discrete-time LTV system given
by: {

xk+1 = Akxk +Bkuk
yk = Ckxk

(1)

where xk is a n dimensional vector, Ak is a (n×n) matrix,
Bk and Ck are a m dimensional vectors.
If the given system is uniformly N-step controllable, then there
exist a transformation applied to the state given by:

Z̄k = T̄ xk (2)

where T̄k is a Lyapunov transformation matrix, presented
in Appendix A, obeying the conditions below.

• T̄k is defined each sample time.

• T̄k and T̄k+1 are bounded each sample time.

• There exist a constant m where:

0 < m < det(T̄k), k > 0

This algorithm of controllable form leads to a new state
vector equation written as following:{

Zk+1 = ĀkZk + B̄kūk
yk = C̄kZk

(3)

where Āk, B̄k and C̄k are given by the new canonical
controllable form for LTV systems, such as:

Āk = T̄k+1AkT̄
−1
k (4)

=


0 1 0 0
...

. . . . . . . . .
...

...
. . . . . . 0

0 . . . . . . 0 1
−γ0(k) −γ1(k + 1) . . . . . . −γn−1(k + n− 1)

 (5)

B̄k = T̄k+1Bk =


0
...
...
0
1

 (6)

C̄k = CkT̄k+1 =
(
α1k . . . α(n−1)k

)
(7)

B. Flatness Properties

Flatness can parametrize, in a very simple way, the dy-
namic aspect of a given system based on highlighting some
endogenous fundamental variables called flat outputs. In fact,
the state, the input and the output using the flat output can be
written as follows:

xk = f1 ( zk, zk+1, . . . , zk+n−1 )
T (8)

and

uk = f2 ( zk, zk+1, . . . , zk+m−1 )
T (9)

yk = gk ( xk, uk )
T (10)

As known, on the first hand, the state, the input vector and
the output vector in continuous time framework are defined as
a successive derivatives of the flat output, on the other hand,
in discrete-time framework it is considered as a phase advance
sequence of the flat output.

Marlait et al. [13] results confirm that discrete-time LTV
system is the equivalent of a controllable LTI system and
noting that flatness of a given one is strongly related to
the uniform controllability. To build up flatness-based control
it is necessary that the considered system is flat, so firstly
its controllability [12], [14] must be checked out. If the
system is uniformly N-step controllable then we can apply
the control law. Let’s consider the plant given by (1) and the
transformation given by (2).

Noting that zk the first element of the state vector Zk, then
from (3) it’s clear that Zk can be written as [11]:

Zk = [ zk zk+1 . . . zk+n−1 ]
T (11)

where zk is the Bronovsky output.

The expression of the input uk is a function of zk, and its
forward terms:

uk = zk+n + γn−1(k + n− 1)zk+n−1 + . . .+ γ1(k + 1)zk+1 (12)

+γ0(k)zk

The output yk which depends on zk is written as follows:

yk = C̄kZk =

n−1∑
i=0

αikzk+i (13)

zk can be considered as a flat output of the discrete LTV
system. From the canonical form given previously flatness-
based control for SISO LTV systems will be developed in the
next section.

III. FLATNESS-BASED CONTROL FOR SISO LTV
SYSTEMS

A. Flatness-based Control

Following (11) the flatness-based control law is given by:

uk = zdk+n +

n−1∑
i=0

κi(z
d
k+i − zk+i) +

n−1∑
i=0

γi(k + i)zk+i (14)

κi are derived from the following polynomial:

K(q) = qn +

n−1∑
i=0

κiq
i (15)
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which must be shur [15], [16]. To build this control it is
necessary to estimate the state vector Zk using an observer
[17]. In this paper the dead-beat observer is used in the design
strategy leading to a 2DOF controller. The structure of the
flatness-based control is given by the following expression:

uk = K(q)zdk + ΛkZk (16)

with:

Λk =

 γ0k − κ0
...

γi(k+i) − κi

 (17)

The control law schema is shown in Fig. 1.

Fig. 1. Control law design.

B. Dead-beat Discrete-time Varying Observer Design

Successive iterations of the output equation in (3) to the
order (n− 1) [18], give:

yk
yk+1

...
yk+n−1

 = LkZk +Mk


uk
uk+1

...
uk+n−2

 (18)

with:

Lk =


C̄k

C̄(k+1)Āk

C̄(k+2)Āk+1Āk

...
C̄(k+n−1)Ā(k+n−2)...Āk

 (19)

and:

Mk =



M1,k 0 · · · 0

M2,k M1,k+1 · · ·
...

M3,k M2,k+1 · · ·
...

...
... · · · 0

Mn−1,k Mn−2,k+1 · · · M1,k+n−1

 (20)

where:

M1,k = C̄k+1B̄k (21)

and:

Mi,k = C̄k+i−1Āk+iB̄k (22)

Noting that:

Yk = ( yk . . . yk+n−1 )
T (23)

and:

Uk = ( uk . . . uk+n−2 )
T (24)

Equation (18) can be then written as:

Yk = LkZk +MkUk (25)

Supposing that the system is uniformly N-step observable
then the rank of Lk is n for all k. Noting that Lk is the
observability matrix, so:

Zk = L−1k Yk − L−1k MkUk (26)

In a second hand:

Zk = q−1
(
ĀkZk + B̄kuk

)
(27)

After a second iteration:

Zk = q−1
(
Akq

−1 (AkZk +Bkuk) +Bkuk
)

(28)

The iteration of this expression to the order l gives:

Zk = φlq
−lZk +

l−1∑
i=1

φiB̄k−(i+1)uk−(i+1) + B̄k−1uk−1 (29)

with:

φl =

l∏
j=1

Āk−j (30)

φ0 = In (31)

I is the identity matrix and φl is (n × n)-dimensional
matrices. By replacing Zk in the right side of (29) by the
expression in (26), Zk can be written as follows:

Zk = φlq
−l(L−1k Yk − L−1k MkUk) (32)

+

l−1∑
i=1

φiB̄k−(i+1)uk−(i+1) + B̄k−1uk−1

then:

Zk = φlL
−1
k−l

 yk−l
...
yk

− φlL−1k−lMk−l

 uk−l
...

uk+n−2−l

 (33)

+

l−1∑
i=1

φiBk−(i+1)uk−(i+1) +Bk−1uk−1

As Zk is written as:

Zk = φlL
−1
k−l

 yk−l
...
yk

− φlL−1k−lMk−l

 uk−l
...

uk+n−2−l

 (34)
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+ ( φl−1Bk−l . . . φ1Bk−2 φ0Bk−1 )

 uk−l
...

uk+n−2−l


we obtain:

Zk = φlL
−1
k−lYk−l − [φlL

−1
k−lMk−l −Ψ]Uk−l (35)

Supposing that l = n − 1, the expression of Zk is then
given as follows:

Zk = φ(n−1)L
−1
k−(n−1)Yk−(n−1) (36)

−[φlL
−1
k−(n−1)Mk−(n−1) −Ψ]Uk−(n−1)

with:

Ψ =
[
φ(n−1)−1Bk−(n−1) . . . φ1Bk−2 . . . φ0Bk−1

]
(37)

C. 2-DOF controller using flatness based control

By replacing Zk by its expression of (36) in the expression
of the flatness-based control law given by (16).

The flatness-based control can be then written in the
following form:

S(k, q−1)uk = K(q)zdk −R(k, q)yk (38)

with:

S(k, q−1) = (1 + Λk

[
φn−1L

−1
k−n−1Mk−n−1 −Ψ

]
)Π∗ (39)

and:

R(k, q) = ΛkφlL
−1
k−n−1Π (40)

where:

Π =
(
q−n+1 . . . 1

)T
(41)

and:

Π∗ =
(
q−n+1 . . . q−1

)T
(42)

The final form of the controller allows us to obtain a 2DOF
controller in LTV framework without need to define any ob-
servation dynamics and without resolution of the diophantine
equation.

IV. ILLUSTRATIVE NUMERICAL EXAMPLE

A. Considered model

Let’s consider the following discrete-time system defining
by the matrices:

Ak =

[
0 e−kT

1 e−kT

]
(43)

Bk =

[
1

e−(k+1)T

]
, Ck = [ 0 1 ]

This system is an academic second order model, with single
input and single output used to highlight the effectiveness of
the discrete-time flatness-based control approach in LTV SISO
case. Noting that, k is the iteration rank and T = 0.5s is the
simple time.

The open loop step response is given by Fig. 2.

Fig. 2. Control law design.

B. Desired Trajectory

To achieve the implementation of this control law, firstly
the definition of the trajectory is needed to be tracked by the
considered system.

The aim is to force any system to track the given trajectory,
so it’s necessary to choose the reference trajectory, then we can
determine correctly the endogenous parameters satisfying this
objective with a correct dynamics. Let’s consider the desired
flat output defined as follows:

zd(kT ) = zin +

(
21

(
kT

50

)5

− 35

(
kT

50

)6

+ 15

(
kT

50

)7
)

(44)

× (zfin − zin)

zin and zfin are the initial and final values of the flat
output that is determined endogenously from the initial and
final values of the system outputs. The trajectory presented in
the discrete-time is used as a reference for the flatness-based
control using dead-beat observer.

The discrete-time desired trajectory is represented in
Fig. 3.

Fig. 3. Desired trajectory for the discrete-time flat output.
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C. Control design

From (14), the control law is given by:

uk = zdk+2 + k1z
d
k+1 + k0z

d
k + (γ0(k)− k0) zk (45)

+ (γ1(k)− k1) zk+1

After applying the controllable canonical form, the system
matrices are given as follows:

Āk =

[
0 1

−γ0(k) −γ1(k)

]
(46)

B̄k =

[
1

e−(k+1)T

]
, C̄k = [ 0 1 ]

with:

γ0(k) =
e(k+3) − e(3) + e(3k+1)

e(2k+1) + e(4k+1) − ek
(47)

γ1(k) =
f1 + f2
f3

(48)

and:

Λk =

[
f4
f5
f6
f7

]
(49)

where:
f1 = e3 × ek − e1 − e2k × e1

f2 = e2k × e4 + e3k × e3

f3 = e2k × e2 − ek + e4k × e4

f4 = 100
(
ek+3 − e3 + e3k+1

)
+ 7

(
e2k+1 + e4k+1 − ek

)
f5 = 100

(
e2k+1 + e4k+1 − ek

)
f6 =

ek+4 + e3 + e2k+3

ek+2 + e3k+4 − 1
− ek+1

(
e−2k − 1

)
f7 = ek+2 + e3k+4 − 2.65

The transition matrix is:

φ1 = Āk−1, φ0 = 1

and:
Ψ =

[
Āk−1B̄k−2 B̄k−1

]
As noted previously, this control law can lead to a 2DOF

controller with the following parameters:

S
(
k, q−1

)
=
(
1 + Λ

[
φ1L

−1
k−1Mk−1 −Ψ

])
Π∗ (50)

R (k, q) = Λφ1L
−1
k−1Π (51)

with:

S(k, q−1) =

[
1− (

s1 × s2
s3

)− s4
s5

]
q−1 (52)

R(k, q) = [r1, r2]×
[
q−1

1

]
(53)

where:

s1 =
ek+1.(e2k+1 + 1)− (ek+4 + ek+1 + 20)

ek+2 + e3k+4 − 1
+ 0.6

s2 = e2k − ek+3 + e2 + e2k+1 − e3k+1 − e2k+3 + e4k+1 − ek

s3 = e2k+1 + e4k+1 − ek

s4 = 100(ek+3 + e3k+1) + 13(e2k+1 + e4k+1 − ek)− 2

s5 = 100(e2k+1 + e4k+1 − ek)

and:

r1 =
ek+3 + 0.13e2k+1 + e3k+1 + 0.13e4k+1 + 0.13ek − 20

e2k+1 + e4k+1 − ek

r2 =
(r3 × r4 × r5)

r6

r3 = e3k+1(e3k+2 + ek − 1)

r4 = ek+5 − e6 + e3k+1

r5 =
ek+1(e−2k + 1)− ek+4 + e2k+3 + 20

ek+2 + e3k+4 − 1
+ 0.6

r6 = (e5k − e2k+5 + e3k+4)(e4k − ek+2 + e2k+2)

A 2-DOF controller in LTV framework is obtained without
defining any observation dynamics, the effectiveness of this
control method is shown in the next section.

D. Simulation Results

After applying the control law signal shown in Fig. 4 to the
considered system, the effectiveness of this method is proven
and the system output follows the desired flat output with an
error which tends to zero as shown in Fig. 6. Both the system
output and the desired flat output are represented in Fig. 5.

Fig. 4. The control signal uk .
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Fig. 5. System output and desired flat output: y and yd.

Fig. 6. Tracking error for the system output.

Fig. 7. System output and desired flat output: y and yd with the first initial
condition δy0 = 0.2.

Fig. 8. System output and desired flat output: y and yd with the second
initial condition δy0 = 0.5.

When applying two different initial conditions value to the
desired trajectory, we obtain the results shown in Fig. 7 and 8

Fig. 9. Tracking error for the second initial condition.

with error for the first one given by Fig. 9.

The linearization around a given trajectory applied to a
nonlinear system leads to a linear time-varying system. The
real time simulation of such method poses a very important
field of study because of the strong symbolic calculations
leading to a large size of polynomial matrices. Moreover, The
robustness of such method touching the time-varying perturba-
tions, the varying parameters and the practical implementation
are prospects which will be carried out in the future works.

V. CONCLUSION

In this paper, a discrete-time control law using the flatness
property with trajectory tracking is proposed. Many works
which have used the fatness theory to achieve a trajectory
tracking by solving bezout equation and carrying out a pole
placement. Several difficulties gone through during the design
of those methods. Contrary, with a quite few calculations
and avoiding the above-mentioned problems our developed
approach seems more effective. The design of this control
law coupled with a dead-beat observer leads to a 2DOF
controller without need to solve diophantine equation. Such
a controller based on flatness implies the use of a dead-beat
observer, leading to a direct interpretation of the closed loop
poles, which are naturally constituted by the poles of the the
tracking polynomial K(q). This control law method shows
good performances in terms of trajectory tracking in the case
of LTV discrete-time systems.

APPENDIX

The matrix T̄k is called the transformation matrix, its the
tool that transforms any system to its controllable form [12].
In the LTV discrete-time case this matrix changes over time
at each sample until convergence. The plant (1) becomes:

{
Zk+1 = T̄k+1AkT̄

−1
k Zk + T̄k+1BkUk

yk = CkT̄
−1
k Zk

(54)

with Āk = T̄k+1AkT̄
−1
k , B̄k = T̄k+1Bk and C̄k = CkT̄

−1
k

In the following, we give the steps to obtain the controllable
canonical form. Consider the following vector sequence for
i = 1...n .{

R0 = Bk, i = 0
Ri = AkRi−1(k + 1), i = 1...n

(55)
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the controllability matrix is then written as:

R(k) = ( R0(k) . . . Rn−1(k) ) (56)

if rank(R(k)) = n and to be uniformly N-step controllable
means that, for all k, the system is controllable on the interval
[k−N + 1, K + 1]. Then the effect of this variable change
results in the following equation [12]:

R̄i(k) = T̄k+1Ri(k) (57)

then:

Rc(k) = T̄k+1R(k) (58)

When the pair (Āk, B̄k) is deduced by the variables change
of the pair (Ak, Bk), and if R(k) is non-singular, then the
following form is obtained [7]:

T̄k+1 = Rc(k)RT (k)
(
R(k)RT (k)

)−1
(59)

otherwise we have the following form:

T̄k+1 = R(k)R−1c (k) (60)

The condition of singularity of the matrix Rk is a con-
trollability criterion in the discrete-time case. This property
is preserved by the variables change [12]. The algorithm for
constructing the controllable form is then:

• Construction of γ(k) vector

γ(k) = −R−1(k)Rn(k) = ( γ0(k) . . . γn−1(k) )
T (61)

• Transformation T̄k+1 then T̄k which puts the pair
(Āk, B̄k) as in (5), (6) and (7).
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de dimension finie, Thèse de Doctorat, Institut National Polytechnique
de Toulouse, Tarbes 2002.

[7] Rotella, F., Carrillo, F. and Ayadi, M., Digital flatness-based robust
controller applied to a thermal process, IEEE International Conference
on Control applications, Mexico, pp.936–941, 2001.

[8] BEN ABDALLAH, M., AYADI, M. et BENREJEB, M., Flatness-based
control of MIMO linear Systems, Transaction on Systems, Signals and
Devices, vol. 6, n. 1, pp.1–24, 2011.

[9] SLEIMI, M., BEN ABDALLAH, M. and AYADI, M., Digital flatness-
based control design for LTI MIMO systems, IEEE 4th International
Conference on control Engineering and Information Technology, CEIT,
Hammamet, 2016.

[10] BENABDALLAH, M., Sur la commande par platitude de systèmes
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