
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

19 | P a g e

www.ijacsa.thesai.org

User-Defined Financial Functions for MS SQL Server

Jolana Gubalova, Petra Medvedova

Department of Quantitative Methods and Information systems

Faculty of Economics, Matej Bel University

Banska Bystrica, Slovakia

Abstract—The paper deals with mathematical preparation

and subsequent programming of various types of financial

functions with using of Transact-SQL in Database Management

System MS SQL Server. Financial functions are used to

automate calculations in the area of Financial Economics. In

MS SQL Server, any financial functions are not offered for

financial data processing, how such as in program MS Excel. We

emphasize that we have used a different calculation methods to

create financial formulas, not those used in Excel. If users want

to work with some special functions, there is a possibility to

prepare User-Defined Functions (UDFs). The use of UDFs will

make it easier to work on financial calculations in large

databases.

Keywords—Financial economics; user-defined functions;

financial functions; database management system; structure query

language; transact-SQL

I. INTRODUCTION

Aggregate queries over big economic relational databases,
prepared with using of Structure Query Language (SQL) and
special programs belong to the most used tools in the area of
Business Intelligence (BI) and Data Analytics (DA). One of the
most important Relational Database Management Systems
(RDBMS) for data saving, processing and analyzing, in the
area of huge corporate or financial databases, is MS SQL
Server. SQL Server runs on Transact – SQL (T-SQL), a set of
programming extensions, that add several features to standard
SQL, including transaction control, error handling, row
processing and declared variables. SQL Server also allows
stored procedures to be defined. Functions are a special type of
stored procedures. They accept parameters, perform some sort
of action and return a result. Functions do all of this with no
side effects [14]. As Simhadri, V., at all said [12], queries
containing user-defined functions (UDFs) are widely used,
since they allow queries to be written using a mix of imperative
language constructs and SQL, thereby increasing the
expressive power of SQL; further, they encourage modularity,
and make queries easier to understand. Writing user-defined
functions or stored procedures presents common way in
application development using a relational database
management system. It allows to embed application code
inside of RDBMS [15]. SQL Server provides numerous types
of built-in scalar functions, for example, there are many built-
in mathematical functions, date functions, string functions or
aggregate functions. The types of user-defined functions
(UDFs), that SQL Server supports, are scalar (return a single
value) and table-valued (return a table). Most commercial SQL
database systems support user-defined functions that can be
used in WHERE clause filters, SELECT list items, or in

sorting/grouping clauses. Often, user-defined functions are
used as inexact search filters and then the filtered rows are
sorted by a relevance measure [8]. Running analytics
computation inside a database engine through the use of UDFs
(User Defined Functions) has been investigated, but not yet
become a scalable approach due to several technical
limitations. One limitation lies in the lack of generality for
UDFs to express complex applications and to compose them
with relational operators in SQL queries. Another limitation
lies in the lack of systematic support for a UDF to cache
relations initially for efficient computation in multi-calls.
Further, having UDF execution interacted efficiently with
query processing requires detailed system programming, which
is often beyond the expertise of most application developers
[4]. Ordonez, C., at all described in [10], [11] vector and matrix
operations programmed with UDFs in a relational DBMS and a
data mining system based on SQL queries and UDFs for
relational databases. Sousa, M., at all [13] dealt with
consolidation of queries with UDFs.

UDFs can also be used in Excel. Lester in [6]
recommended them as alternative methods to perform duct
calculations.

II. OBJECTIVE AND METHODS

In SQL Server, any financial functions are not offered for
financial data processing, how such as in program MS Excel.
This fact we felt like a big shortage in processing of financial
data. Because of this problem, we decided to prepare main
financial functions, available in program MS Excel, also in
MS SQL Server with using of program extension T-SQL.
There were particularly financial functions: for calculation of
the future value of an investment based on a constant interest
rate, for returning the number of periods for an investment
based on periodic, constant payments and a constant interest
rate, for calculation of the payment for a loan based on constant
payments and a constant interest rate, or for calculation of the
present value of a loan or an investment, based on a constant
interest rate. The concepts of financial mathematics are
described in sources [1] – [3], [9].

Finally we compared the speed and efficiency of work with
classical formulas and UDFs in SQL Server 2012 with using of
special tools - Execution plan and Client Statistics. Execution
plans display how the database engine navigates tables and
uses indexes to access or process the data for a query or other
DML (Data Manipulation Language) statement, such as an
update [7]. This graphical approach is very useful for
understanding the performance characteristics of a query.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

20 | P a g e

www.ijacsa.thesai.org

Client Statistics is SQL Server data tool which is very
helpful in determining the statistics that how much data
received from server to the client side. It means, client statistics
helps in analyzing the traffics load like packets/bytes sent and
received at client – server side. When we run a script or query
in T-SQL editor, we can enable Client statistics to collect
statistics like application profile, time statistics and network
statistics which help in checking the efficiency of the script.

III. RESULTS AND DISCUSSION

In the following, we approached the basic knowledge and
relationships of interest and rent numbers that we later used.
We only dealt with compound interest when the interest is
added to the original capital and the sum is further capitalized.
In all considerations, we considered overdue (decursive)
capitalization, in other words - interest paid at the end of the
interest period. Throughout the text, we used the following
symbols in Table I.

TABLE I. LIST OF ARGUMENTS

Financial

mathematics
T-SQL Meaning

FV @FV Future Value of a capital

PV @PV Present Value of a capital

PMT @PMT
Payment based on regular constant

payments

i @RATE Interest Rate per year

m @NPER
Number of conversions

per year

n @YEARS Number of years

p @NPAY
Number of payments

per year

T @TYPE

Value representing the timing of

payment

T=1 payment at the beginning of the
period

T=0 payment at the end

of the period

We calculated the future value of the initial capital at
compound interest over n years based on the following

formula by [5].

  .1
n

iPVFV    

In practice, it is common that the interest rates are
considered more often than once a year, and then we talk about
compound interest capitalization with conversions. We call the
period between the two following interest charges conversion.
Interest is generally charged m -times annually. The future

value of capital in compound interest with conversions in n
years was determined based on the following formula by [5]

.1

nm

m

i
PVFV















In real-life economics, we often encounter a system of
regularly repeated payments. This sequence of regularly
repeated payments is called a rent or cash flow. In this analysis,
we dealt only with constant, unconditional, temporary,
immediate-term rents (cash flows). With constant rent, the
amount of the individual payments does not change (remains
unchanged). Unconditional or sure rent is a rent, where
individual rent payments are not subject to any conditions.
Temporary or terminal rent has the finite number of payment.
We are talking about immediate rent, if the first payment is
made at the beginning or end of the first rent period. When
considering a p -term rent, p determines the number of

payments per year. If the payments are always made at the end
of the time period, we are talking about a strenuous (overdue,
post-term) rent, if the payments are always made at the
beginning of the period, we are talking about the pre-term rent.
The future value of an annuity (rent payments, cash flow) is the
sum of the future values of all annuity payments calculated at
the end of the n -th year.

For the future value of a p -term strenuous (overdue, post-

term) rent after years, the following formula applies by [5]

.

11

11

























p

m

nm

m

i

m

i

PMTFV (3)

The future value of a p -term rent, provided a pre-term

(pre-paid) payment after n years was determined based on the

following formula by [5]

.

11

11

1

































p

m

nm

p

m

m

i

m

i

m

i
PMTFV (4)

We were interested in the future value of the initial capital
provided, that we regularly deposited payments to the initial
capital p -times per year for n years with annual interest rate

i and m conversions per year.

A. Future Value of a Series of Payments

At first we considered the overdue (post-term) rent, so we
paid the payments at the end of p -th of the year each year.

Next we considered the pre-term rent, so we paid the
instalments at the beginning of p -th of the year each year.

The future value in our case we determined as the sum of the
future value of compound interest with conversions and the
future value of the p -term rent by using formulas (2) and (3)

for post-term rent and by using formulas (2) and (4) for pre-
term rent, which resulted in the following formulas in Table II.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

21 | P a g e

www.ijacsa.thesai.org

TABLE II. FUTURE VALUE – FORMULAS AND PROGRAM CODE

T=0

11

11

1



































p

m

nm

nm

m

i

m

i

PMT
m

i
PVFV

T=1

11

11

11












































p

m

nm

p

m
nm

m

i

m

i

m

i
PMT

m

i
PVFV

--FV

CREATE FUNCTION FV (@RATE FLOAT, @YEARS FLOAT, @PMT FLOAT,@PV FLOAT, @NPER FLOAT, @NPAY FLOAT, @TYPE INT)
RETURNS MONEY

AS

BEGIN
DECLARE @FV MONEY

IF @TYPE = 0

SET @FV = @PMT*((POWER(1+@RATE/@NPER,@YEARS*@NPER)-1)/(POWER(1+@RATE/@NPER,@NPER/@NPAY)-1))+
@PV*POWER(1+@RATE/@NPER,@NPER*@YEARS)

IF @TYPE = 1

SET @FV = @PMT*((POWER(1+@RATE/@NPER,@YEARS*@NPER)-1)/(POWER(1+@RATE/@NPER,@NPER/@NPAY)-
1))*POWER(1+@RATE/@NPER,@NPER/@NPAY)+ @PV*POWER(1+@RATE/@NPER,@NPER*@YEARS)

RETURN @FV
END

B. Present Value of a Capital

From the formulas for the future value FV (2), (3), (4), we

expressed the initial deposit which is needed in the periodic

payments to accumulate the future value using the following
expressions in Table III.

TABLE III. PRESENT VALUE OF A CAPITAL – FORMULAS AND PROGRAM CODE

T=0

11

11

1



































p

m

nm

nm

m

i

m

i

PMT
m

i
FVPV

T=1

11

11

11












































p

m

nm

p

m
nm

m

i

m

i

m

i
PMT

m

i
FVPV

CREATE FUNCTION PV (@RATE FLOAT, @YEARS FLOAT, @PMT FLOAT, @FV FLOAT, @NPER FLOAT, @NPAY FLOAT, @TYPE INT)

RETURNS MONEY

AS
BEGIN

DECLARE @PV MONEY

IF @TYPE = 0
SET @PV =(@FV*POWER(1+@RATE/@NPER,-@NPER*@YEARS) - @PMT*(1-POWER(1+@RATE/@NPER,-

@NPER*@YEARS))/(POWER(1+@RATE/@NPER,@NPER/@NPAY)-1))

IF @TYPE = 1
SET @PV = @FV*POWER(1+@RATE/@NPER,-@NPER*@YEARS) - @PMT*POWER(1+@RATE/@NPER,@NPER/@NPAY)*(1-

POWER(1+@RATE/@NPER,-@NPER*@YEARS))/(POWER(1+@RATE/@NPER,@NPER/@NPAY)-1)

RETURN @PV
END

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

22 | P a g e

www.ijacsa.thesai.org

C. Payment based on Regular Constant Payments

We determined the amount of a regular instalment PMT

which would give us with the initial deposit PV after n years

a future value FV . It was enough to express from formula for

future value FV (2), (3), (4), p -term payment after n years

to express the unknown PMT and we have got the following
formulas in Table IV.

TABLE IV. PAYMENT BASED ON REGULAR CONSTANT PAYMENTS – FORMULAS AND PROGRAM CODE

T=0

11

11

1















































nm

p

m

nm

m

i

m

i

m

i
PVFVPMT

T=1

p

m

nm

p

m

nm

m

i

m

i

m

i

m

i
PVFVPMT

























































 1

11

11

1

--PMT

CREATE FUNCTION PMT (@RATE FLOAT,@YEARS FLOAT, @PV FLOAT,@FV FLOAT, @NPER FLOAT, @NPAY FLOAT, @TYPE BINARY)

RETURNS MONEY
AS

BEGIN

DECLARE @PMT MONEY
IF @TYPE = 0

SET @PMT = (@FV-@PV*POWER(1+@RATE/@NPER,@NPER*@YEARS))*(POWER(1+@RATE/@NPER,@NPER/@NPAY)-

1)/(POWER(1+@RATE/@NPER,@NPER*@YEARS)-1)
IF @TYPE = 1

SET @PMT = (@FV-@PV*POWER(1+@RATE/@NPER,@NPER*@YEARS))*POWER(1+@RATE/@NPER,-

@NPER/@NPAY)*(POWER(1+@RATE/@NPER,@NPER/@NPAY)-1)/(POWER(1+@RATE/@NPER,@NPER*@YEARS)-1)

RETURN @PMT

END

TABLE V. NUMBER OF YEARS – FORMULAS AND PROGRAM CODE

T=0





























































































PMT
m

i
PV

PMT
m

i
FV

m

i
n

p

m

p

m

m

11

11

ln

1ln

1

T=1















































































































p

m

p

m

p

m

p

m

m

m

i
PMT

m

i
PV

m

i
PMT

m

i
FV

m

i
n

111

111

ln

1ln

1

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

23 | P a g e

www.ijacsa.thesai.org

--YEARS

CREATE FUNCTION YEARS (@RATE FLOAT,@NPay FLOAT,@PV FLOAT,@FV FLOAT, @PMT FLOAT, @NPER FLOAT, @TYPE INT)
RETURNS FLOAT

AS

BEGIN
DECLARE @YEARS FLOAT

IF @TYPE = 0

SET @YEARS = LOG(((@FV*(POWER(1+@RATE/@NPER,@NPER/@NPay)-1)+@PMT))/((@PV*(POWER(1+@RATE/@NPER,@NPER/@NPay)-
1)+@PMT)))

/LOG(POWER(1+@RATE/@NPER,@NPER))

IF @TYPE = 1
SET @YEARS = LOG(((@FV*(POWER(1+@RATE/@NPER,@NPER/@NPay)-

1)+@PMT*POWER(1+@RATE/@NPER,@NPER/@NPAY)))/((@PV*(POWER(1+@RATE/@NPER,@NPER/@NPay)-
1)+@PMT*POWER(1+@RATE/@NPER,@NPER/@NPAY))))

/LOG(POWER(1+@RATE/@NPER,@NPER))

RETURN @YEARS
END

D. Number of Years

The same, on the basis of previous formulas (2), (3), (4),

we have expressed a number of years n which are needed on

obtaining of the future value FV . The corresponding

formulas are as follows in Table V.

E. Number of Payments per Year

By expressing the number of payments per year p from

future value formulas (2), (3), (4), we obtained the following
formulas in Table VI.

F. The Comparison of Classical Calculations and

Calculations with using UDFs

For comparison the speed and efficiency of work with
classical formulas and UDFs we decided to use a training
financial database with 1 048 575 records in DBMS MS SQL

Server 2012. Firstly we run query with using of classical
formula for calculation of Future Value and next with UDF
Future Value. We also controlled Execution plans and Clients
Statistics for this queries.

The Execution Plan consists of different operations and
each operation has one output which is called the result set.
The operations can have one or more inputs. There are many
potential ways to execute a query thus SQL Server has to
choose the most beneficial one. Client statistics helps in
analyzing the traffics load like packets/bytes sent and received
at client – server side. When we run a script or query in T-SQL
editor, we can enable Client statistics to collect statistics like
application profile, time statistics and network statistics which
help in checking the efficiency of the query.

TABLE VI. NUMBER OF PAYMENTS PER YEAR– FORMULAS AND PROGRAM CODE

T=0 T=1











































































1

1

11

ln

1ln

nm

nm

m

m

i
PVFV

m

i
PMT

m

i

p











































































nm

nm

m

m

i
PVFV

m

i
PMT

m

i

p

1

11

1ln

1ln

-- Number of payments per year

CREATE FUNCTION NPay (@RATE FLOAT,@YEARS FLOAT,@PV FLOAT,@FV FLOAT, @PMT FLOAT, @NPER FLOAT, @TYPE INT)
RETURNS FLOAT

AS

BEGIN
DECLARE @NPay FLOAT

IF @TYPE = 0

SET @NPay = LOG(POWER(1+@RATE/@NPER,@NPER))/LOG((@PMT*(POWER(1+@RATE/@NPER,@YEARS*@NPER)-1))/(@FV-
@PV*POWER(1+@RATE/@NPER,@YEARS*@NPER))+1)

IF @TYPE = 1

SET @NPay = LOG(POWER(1+@RATE/@NPER,@NPER))/-LOG(1-(@PMT*(POWER(1+@RATE/@NPER,@YEARS*@NPER)-1))/(@FV-
@PV*POWER(1+@RATE/@NPER,@YEARS*@NPER)))

RETURN @NPay

END

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

24 | P a g e

www.ijacsa.thesai.org

Fig. 1. Execution Plan of Classical Formula Future Value.

Fig. 2. Execution Plan of UDF Future Value.

As we can see at Figure 1, in case of classical formula
Future Value, totally amount Query cost was spent by Table
Scan of FinacialData (99%) and the rest (1%) was belong to
Compute Scalar. The same situation was in case of UDF Future
Value (Figure 2).

TABLE VII. COMPARISON OF CLIENT STATISTIC FOR CLASSICAL FORMULA

AND UDF

 Classical Formula UDF

Client Execution Time 16:43:38 16:52:49

Query Profile Statistics

Number of SELECT
statements

1 1

Rows returned by SELECT
statements

1048575 1048575

Network Statistics

Number of server

roundtrips
3 1

TDS packets sent from

client
3 1

TDS packets received from
server

2572 2569

Bytes sent from client 504 210

Bytes received from server 1,052478E+07 1,050631E+07

Time Statistics [ms]

Client processing time 1178,6 2797,8

Total execution time 1185,4 2806,8

Wait time on server replies 6,8 9,0

If we compared Client Statistics of classical formula Future
Value and Client Statistics of UDF Future Value (Table VII.),
we can stated, that Query Profile Statistics is the same in both
cases.

But the difference is in Network Statistics – item Bytes sent
from client is bigger at Classical Formula Future Value,
because in case of UDF, client sent only data and formula were
prepared on server side.

But there is significant difference in Client processing time.
This attribute is almost 2,37 times higher for the UDF than for
the Classical formula.

IV. CONCLUSIONS

The comparison classical calculations and calculations with
using UDFs showed, that UDFs don’t bring acceleration of the
computation process opposite to the classical formulas. On the
contrary, with using of the UDF the calculation process takes
longer. However, working with them is simpler and more
comfortable than with classical formulas, because they
encourage modularity and make queries easier to understand.
This is main reason they are popular among users in financial
area. Stored procedures and UDFs can be prepared also in
other extended DBMS, such as Oracle (Pragma UDFs),
mySQL, PostgreSQL, DB2, Informix, etc.

REFERENCES

[1] Baz, J., Chacko, G., (2004). Financial derivatives: Pricing, applications,
and mathematics. Publisher: Cambridge University Press, ISBN: 978-
051180664-3;978-052181510-9.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

25 | P a g e

www.ijacsa.thesai.org

[2] Dworsky, L.N., (2009). Understanding the Mathematics of Personal
Finance: An Introduction to Financial Literacy. Publisher: John Wiley
and Sons, ISBN: 978-047049780-7.

[3] Hirsa, A., Neftci, S.N., (2013). An Introduction to the Mathematics of
Financial Derivatives. Publisher: Elsevier Inc. ISBN: 978-012384682-2.

[4] Hsu, M., at all, (2010). Generalized UDF for analytics inside database
engine. 11th International Conference on Web-Age Information
Management, WAIM 2010; Jiuzhaigou; China, ISBN: 3642142451;978-
364214245-1.

[5] Huťka, V., & Peller, F. (1999). Finančná matematika v Exceli, Elita,
Bratislava, 1999, ISBN 80-8044-064-6

[6] Lester, T.G., (2009). Using excel for duct calculations user defined
functions. ASHRAE Journal, Volume 51, Issue 8, August 2009, Pages
42-46. ISSN:0001-2491E-ISSN:0364-9962.

[7] Microsoft: Analyze Script Performance https://docs.microsoft.com/en-
us/sql/ssdt/analyze-script-performance?view=sql-server-2017

[8] Murthy, R., at all, (2003). Supporting ancillary values from user defined
functions in Oracle. Nineteenth International Conference on Data
Ingineering; Bangalore; India; Conference Proceeding, Pages 151-162.

[9] Mishura, Y., (2016). Financial Mathematics. Publisher: Elsevier Inc.
ISBN: 978-178548046-1.

[10] Ordonez, C., at all, (2006). Vector and matrix operations programmed
with UDFs in a relational DBMS. 15th ACM Conference on Information
and Knowledge Management, CIKM 2006; Arlington, VA; United
States. Proceedings, Pages 503-512.

[11] Ordonez, C., Garcia-Alvaro, C., (2011). A data mining system based on
SQL queries and UDFs for relational databases. 20th ACM Conference
on Information and Knowledge Management, CIKM'11; Glasgow;
United Kingdom, ISBN: 978-145030717-8.

[12] Simhadri, V., at all (2014). Decorrelation of user defined function
invocations in queries. 30th IEEE International Conference on Data
Engineering, ICDE 2014; Chicago, IL; United States, ISBN: 978-
147992554-4.

[13] Sousa, M., at all, (2014). Consolidation of Queries with User-Defined
Functions. 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), Edinburgh, Scotland.
Volume: 49, Issue: 6, Pages: 554-564. DOI: 10.1145/2594291.2594305.

[14] User defined function. Available at: https://docs.microsoft.com/en-
us/sql/relational-databases/user-defined-functions/user-defined-functions

[15] Vagač, M., Melicherčík, M., (2015). Improving image processing
performance using database user-defined functions. 14th International
Conference on Artificial Intelligence and Soft Computing, ICAISC
2015; Zakopane; Poland. Conference Proceeding, ISBN: 978-
331919323-6.

