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Abstract—Quantitative evaluation based on amplitude 

modulation analysis of electroencephalographic signals is 

proposed for a brain computer interface paradigm. The method 

allows characterization of the interaction effects of different 

frequency bands in the electroencephalographic rhythms during 

motor tasks. A new index was proposed and computed to be a 

measure of the amplitude modulation. Built on this index, 

features vector are established for training different classification 

algorithms. Signals recorded from 50 subjects revealed 

important differences in amplitude modulations between motor 

tasks. Most notably, Theta modulation of the Theta and Alpha 

rhythms proved to be reliable discriminant features between 

different mental tasks. 
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I. INTRODUCTION 

Brain computer interface (BCI) provides a new 
communication channel for people with motor disabilities 
using electroencephalographic signals (EEG) or other brain 
signals. 

EEG is often used in BCI systems because it is not an 
invasive experiment, has no risk and has good time resolution. 

The oscillatory activity in the EEG is classified according 
to rhythms: Delta (0.1-4 Hz), Theta (4-8 Hz), Alpha (8-12 Hz), 
Beta (12-30 Hz), and Gamma (30-60 Hz). 

Motor imagery (MI) is a dynamic state during which a 
given action is mentally simulated by a subject [1]. Sensory 
stimulation, motor behavior, movement or only imagination of 
movement can modify the functional links in the cortex and 
cause an amplitude decrease in the EEG, called Event Related 
Desynchronization (ERD),  or an increase in the amplitude of 
the signal, named  Event Related Synchronization (ERS) of the 
Mu or Beta rhythm. The Mu rhythm is a normal central rhythm 
in Alpha frequency band. Mu waves appear in the sensorimotor 
(SM) cortex. 

Different feature extraction methods are reported for 
discriminating the motor tasks in a BCI paradigm: spectral 
analysis [2], autoregressive methods [3], independent 
component analysis [4], [5], Itakura distance [4] and phase 
synchronization [4], [6]. 

The main objectives of the proposed method are to 
discriminate, extract and classify representative EEG features 

which can be used in brain computer interface motor imagery 
paradigm by means of an amplitude modulation analysis. 

Studies conducted so far using amplitude modulation 
analysis have shown that there are differences between the 
EEG from healthy subjects and EEG from subjects diagnosed 
with Alzheimer's disease [7], [8]. In our case, the differences 
that appear during motor imagery tasks (left hand imagination, 
right hand imagination and relaxation) are studied. 

It is researched the possibility of using a quantitative 
method of analyzing the EEG signal. Amplitude modulation 
analysis is computed for EEG signal rhythms and then some 
classification methods are applied. 

Section II describes the dataset used, the methodology that 
includes the proposed method and the classification methods. 
The results are presented in section III, the discussions in 
section IV and the conclusions in section V. 

II. MATERIALS AND METHOD 

A. Dataset and Subjects 

The database is formed by 50 EEG signals collected from 
50 healthy volunteers, men and women, age range 19-59 years, 
untrained. The EEG signals were recorded with g.MOBIlab+ 
portable acquisition system provided by g.tec Guger 
Technologies together with the BCI2000 platform. Eight 
electrodes (CP3, CP4, P3, P4, C3, C4, PZ and CZ) were placed 
on the volunteers scalp according to International 10-20 
System. The reference electrode was linked on the right 
earlobe. Experimental protocol consisted of randomly right or 
left motor tasks and relaxation periods. The volunteers were 
comfortably seated on a seat in front of a PC monitor that 
displays left or right arrows. They must look carefully at the 
arrows and try to imagine the hand movement indicated by the 
arrow. When the screen is white, the subject needs to relax. 
Each arrow appears for 30 times. The time interval between 
visual stimuli was 2 seconds and the sampling frequency used 
was 256 Hz. Before the experiment, the subject is instructed 
not to speak, to move or to blink during the trials. The 
recordings took place on different days, under brightness 
conditions chosen by the volunteers. All volunteers provided 
written informed consent prior to the experiment. 

B. Data Processing 

Three datasets were created associated to the motor 
imagery tasks: one representing the EEG during the left hand 
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imagination, one representing EEG during the right hand 
imagination and one representing EEG during the relaxation. 

The EEG signal      is decomposed into three frequency 
bands (cerebral rhythms): 4 – 8 Hz (Theta rhythm), 8 - 12 Hz 
(Alpha rhythm), 12 -30 Hz (Beta rhythm). 

                ,             (1) 

Where       , i=1,2,3 represents the impulse response of 
the applied bandpass filter corresponding to each frequency 
band. We justify later why there are only three rhythms used. 

The Hilbert transform      of      signal is: 
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where    is the Cauchy principal value. 

The analytical signal is denoted by: 

     ̅̅ ̅̅ ̅̅ ̅                 .             (3) 

The amplitude modulation        of each cerebral rhythm 
is the modulus of        [7], [8]: 

      √                .              (4) 

The       is multiplied by a 5 s Hamming window which is 
shifted across the data set with a step of 0.5 s. The amplitude 
modulation for frame   is represented as        , where   is 
the time variable. 

For each rhythm   the absolute value of the Fourier 
transform is computed for each sub band  . 

        |          |,             (5) 

where            is the discrete Fourier transform of the 
temporal envelope for each frame        and   denotes 
modulation frequency. 

In order to quantify the rate of change of the temporal 
envelope and the potential frequency interactions, the 
modulation frequencies are subsequently arranged to coincide 
with the first four conventional frequency ranges from Delta to 
Beta. 

Gamma band modulation frequencies (30-60 Hz) can only 
be present for gamma rhythm. Therefore, for this reason, but 
also to reduce the amount of data, the modulation band 
corresponding to gamma rhythm is not taken into account in 
this type of analysis. The Delta rhythm is not taken into 
consideration because there is only one situation (the 
modulation band corresponding to the Delta rhythm consisting 
of the lowest frequencies 0.1-4 Hz). Therefore, we work with 
three rhythms and four modulation bands, which lead to nine 
options. Assigning the band modulation_rhythm notation (e. g. 
Delta_Theta represents modulation in Delta band of the Theta 
rhythm), all the possibilities are depicted in Table 1. 

With the aim of quantifying the weight of the different 
modulation frequencies in the cerebral rhythms, a new 
parameter called                  is proposed: 

                       
       ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

∑ ∑        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 
   

 
   

            (6) 

TABLE I.  MODULATION BANDS CORRESPONDING TO THE CEREBRAL 

RHYTHMS 

Rhythm 
Modulation Band 

Delta Theta Alpha Beta 

Beta Delta _Beta Theta_Beta Alpha_Beta Beta_Beta 

Theta Delta_Theta Theta_Theta Alpha_Theta ----------------- 

Alpha Delta_Alpha Theta_Alpha ------------------ ----------------- 

where        ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the average on all frames (resulting from 

the segmentation of the EEG signal with the Hamming sliding-
window) of the Fourier transform moduli corresponding to the 
modulation frequency band   of the rhythm  , and  

∑ ∑        ̅̅ ̅̅ ̅̅ ̅̅ ̅ 
   

 
    is the sum of all Fourier transform module 

averages for all rhythms and for all possible modulation bands. 

C. Features Extraction, Selection and Data Classification 

Discriminations between the left and the right motor 
activity (left-right), the left motor activity and relaxation (Left-
Relaxation), the right motor activity and relaxation (Right-
Relaxation) are evaluated with five classifiers: linear 
discriminant analysis (LDA) [9], quadratic discriminant 
analysis (QDA) [10], Mahalanobis distance (MD) [11], k 
nearest neighbor (kNN) [12] and support vector machine 
(SVM) [13]. A 10x10 fold cross validation method estimate the 
classification rates. 

The aims of the research concern in finding the modulation 
band/s related to a specific cerebral rhythm and the classifier/s 
which best discriminate between the classes (left - right, left-
relaxation or right - relaxation). 

III. RESULTS 

The implementation of the proposed method is in 
MATLAB. 

There are already mentioned the three cases under study, 
namely left-right, left-relaxation and right-relaxation. 

 
Fig. 1. EEG Alpha Rhythm from Channel C3 (blue) and Theta Amplitude 

Modulation (red) for Subject SL27i when he Imagines the left Hand 
Movement. 
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Fig. 2. EEG Theta Rhythm from Channel C4 (blue) and Delta Amplitude 

Modulation (Red) for Subject SL27i when he Imagines the left Hand 

Movement. 

For each case, the recorded EEG signals are IIR bandpass 
filtered, on the corresponding frequency bands of the three 
rhythms under study (Theta, Alpha and Beta). 

Then using (2), (3) and (4) the amplitude modulations are 
computed. The plots of Fig. 1 and Fig. 2 exemplify an EEG 
rhythm in blue and one of its envelopes in red. 

For each case, the proposed new indexes, computed by 
means of (5) and (6) for the corresponding two classes, 
generate the consistent feature vector.  For each subject from of 
all the 50 subjects the maximum of the classification rates 
estimated by all the mentioned classifiers is further extracted 
(for each rhythm and each corresponding modulation bands). 
So we get 50 maxima for each situation. Hereafter, there are 
taken into account only those values of maxima higher or equal 
to a high threshold considered to be 80%. The results are 
presented in Table II. 

A result from the first cell from Table II is interpreted in 
the following manner: in the left-right case, there are 19 
subjects from the all of 50 subjects whose classification rates 
are higher or equal to 80%. 

TABLE II.  THE NUMBER OF THE MAXIMA OF THE CLASSIFICATION RATES 

HIGHER OR EQUAL TO 80% 

Modulation_Rhythm left-right left-relaxation right-relaxation 

Delta_Theta 19 19 21 

Theta_Theta 20 19 19 

Delta_Alpha 8 20 14 

Theta_Alpha 8 20 23 

Alpha_Alpha 9 14 19 

Delta_Beta 8 12 7 

Theta_Beta 14 13 16 

Alpha_Beta 9 6 16 

Beta_Beta 3 8 10 

The green cells from Table II draw attention to the 
situations when the number of classification rates higher or 
equal to 80% exceeds a proper (high enough) value, considered 
by us being equal to 19. It is obvious that many cases are 
related to Theta rhythm, both for Delta and Theta modulation. 
There are no noteworthy differences for the three cases 
reported (left-right, left-relaxation and right-relaxation). Also, 
in the Alpha rhythm and modulation in Theta and Alpha bands, 
in the right-relaxation case, there are a significant number of 
classification rates greater than 80%. So, for Theta_Alpha, the 
classification rates are above 80% for almost a half of the 
subjects (23 from 50 subjects). In the left-relaxation case, high 
values are obtained for Theta and Delta modulation bands. It is 
worth noticing that low values are achieved for left-right (8 or 
9 from 50 subjects). So we conclude that in left-right paradigm 
the Alpha rhythm modulations are presented in few persons, so 
we ignore it. 

In order to evaluate the results attained for each classifier, 
there are considered only those green marked situations in 
Table II. 

The results for left-right case are illustrated in Fig. 3 where 
only the Theta rhythm is under study. 

 
Fig. 3. Number of Classification Rates Higher than 80%, for all the 

Classifiers in the Left-Right Case 

It is easy to observe that the best results are achieved by 
means of LDA, QDA and SVM classifiers. 

The results for left-relaxation are gathered in Fig. 4. The 
modulations of Theta and Alpha rhythms are considered. 

 
Fig. 4. Number of Classification Rates Higher than 80%, for all the 

Classifiers in the Left-Relaxation Case. 
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LDA, QDA and SVM are the best classifiers also in the 
case presented in Fig. 4. 

The results for right-relaxation are drawn together in Fig. 5. 
As in the previous case, the modulations of Theta and Alpha 
rhythms are taken into consideration. 

As in the two cases, the best results are found for LDA, 
QDA and SVM classifiers. 

For further considerations, we have to mention that for 
Theta_Theta, in left-right case, there are 7 classification rates 
upper 90%, and one with 100%. 

As for all the cases, LDA, QDA and SVM classifiers lead 
to high classification rates, in order to look deeper into and to 
study the distributional characteristics, the box plots are used. 

Fig. 6 illustrates the box plots for LDA classifier for the 
left-right case, Left-relaxation and Right-relaxation cases 
(Delta_Theta and Theta_Theta). 

In Fig. 7 the box plots for LDA classifier for the left-right 
case, left-relaxation and right-relaxation cases (Delta_Alpha 
Theta_Alpha and Alpha_Alpha) are presented. 

 
Fig. 5. Number of Classification Rates Higher than 80%, for all the 

Classifiers in the Right-Relaxation Case. 

 
Fig. 6. The Box Plots for LDA Classifier for the Left-Right Case, Left-

Relaxation and Right-Relaxation Cases (Delta_Theta and Theta_Theta). 

 
Fig. 7. The Box Plots for LDA Classifier for the Left-Right Case, Left-

Relaxation and Right-Relaxation Cases (Delta_Alpha Theta_Alpha and 

Alpha_Alpha). 

 
Fig. 8. The Box Plots for QDA Classifier for the Left-Right Case, Left-

Relaxation and Right-Relaxation Cases (Delta_Theta and Theta_Theta). 

Fig. 8 shows the box plots for QDA classifier for the Left-
right case, left-relaxation and right-relaxation cases 
(Delta_Theta and Theta_Theta). 

In Fig. 9 the box plots for QDA classifier for the left-right 
case, left-relaxation and right-relaxation cases (Delta_Alpha 
Theta_Alpha and Alpha_Alpha) are displayed. 

 
Fig. 9. The Box Plots for QDA Classifier for the Left-Right Case, Left-

Relaxation and Right-Relaxation Cases (Delta_Alpha Theta_Alpha and 
Alpha_Alpha). 
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Fig. 10. The Box Plots for SVM Classifier for the Left-Right Case, Left-

Relaxation and Right-Relaxation Cases (Delta_Theta and Theta_Theta). 

 

Fig. 11. The Box Plots for SVM Classifier for the Left-Right Case, Left-

Relaxation and Right-Relaxation Cases (Delta_Alpha Theta_Alpha and 

Alpha_Alpha). 

Fig. 10 and Fig. 11 indicate the box plots for SVM 
classifier for the left-right case, left-relaxation and right-
relaxation cases (Delta_Theta and Theta_Theta) and 
(Delta_Alpha Theta_Alpha and Alpha_Alpha) respectively. 

When the midpoint and spread of the classification rates are 
examined, we can observe that the lowest medians (lower than 
60%) are for all the classifiers, for the left-right case in Alpha 
rhythm, for all amplitude modulation bands (Delta, Theta and 
Alpha). The medians are about 70% in almost all the other 
situations.  The spread is evaluated by the interquartile range 
box (which represents the middle 50% of the data) and by the 
whiskers. Good results from this point of view are attained 
both for LDA and QDA classifiers, for right-relaxation 
situation, in Theta rhythm modulated by Theta band. Here the 
interquartile range is between 58 % and 80 % classification rate 
and there are no outliers. For LDA, even better results are 
attained for left-right case for Theta_Theta or Delta_Theta 
when the interquartile range is between 63 % and 80%, but 
there are two outliers. For all the situations where good results 
are reported, the whiskers extend to 100 %. 

IV. DISCUSSIONS 

We have to mention that it is impossible to make direct 
comparisons to other results reported on public EEG databases, 
because herein our own database has been handled. In a future 
work, we intend to validate the amplitude modulation analysis 
on the available public databases, especially as the EEG signals 
are recorded on more than 8 channels and better outcomes 
might be attained. 

But comparisons must be done with related works. So, to 
assess the benefits of the proposed method by means of the 
amplitude modulation metric (Modulation_index) we do 
compare our findings with the results from [4] and [12], 
validated on the same database.  

In [4], where Itakura distance based method, phase 
synchronization methods and independent component analysis 
are used, the classification rates are approximately the same 
with the actual results and most of classification rates greater 
than 80% are obtained with QDA, kNN and SVM. Phase 
synchronization metric conducted to the lowest classification 
rates (about 60%) and symmetric Itakura distance to the 
highest ones (about 90%). 

By means of wavelet (Coiflet 4 and Daubenchies 2) 
coefficients and kNN classifiers, in [12], the results were 
between 68% and 91% (only one subject).  

So, the herein results (7 classification rates better than 90% 
and one value of 100%) outperform those from [4], [12]. 

In order to improve the rate of classification for all the 
subjects, we will try to propose a further index/parameter 
which would better characterize the neuromodulatory activity 
of the brain, maybe to combine with other features and to 
employ also other classifiers such as Deep Neural Network 
(DNN) [14].  

It is worth to mention that it is important to have trained 
subjects. So, we will develop a new database with many 
sessions of recordings.   

V. CONCLUSIONS 

The method highlights the frequency bands the cerebral 
rhythms in a motor task based paradigm are modulated with 
and provides additional information over conventional 
methods. 

EEG amplitude modulation analysis has revealed the best 
result concerning classification rate (discriminative patterns) 
between imagination of right hand movement and relaxation 
period when the Theta rhythm is modulated with Theta band 
using LDA and QDA classifiers and between imagination of 
right and left hand movement when the Theta rhythm is 
modulated with Theta or Delta bands, working with LDA 
classifier. 

The results showed that EEG activity both for Theta and 
Alpha rhythms are modulated by the Theta band in a different 
manner when a person imagine the right hand movement, or 
left hand movement or he/she relax. 

We can conclude that the proposed method is helpful in 
separating motor tasks for a BCI paradigm. 

http://context.reverso.net/traducere/engleza-romana/especially+as
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