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Abstract—It is essential to estimate the state of charge (SOC) 

of lead-acid batteries to improve the stability and reliability of 

photovoltaic systems. In this paper, we propose SOC estimation 

methods for a lead-acid battery using a feed-forward neural 

network (FFNN) and a recurrent neural network (RNN) with a 

gradient descent (GD), a levenberg–marquardt (LM), and a 

scaled conjugate gradient (SCG). Additionally, an adaptive 

neuro-fuzzy inference system (ANFIS) with a hybrid method was 

proposed. The voltage and current are used as input data of 

neural networks to estimate the battery SOC. Experimental 

results show that the RNN with LM has the best performance for 

the mean squared error, but the ANFIS has the highest 

convergence speed. 
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I. INTRODUCTION 

Today, several environmental issues exist, including the 
depletion of fossil fuels and the dangers of nuclear power 
generation. For these reasons, the application of renewable 
energy has increased, and research on solar power has been 
actively conducted. Photovoltaic (PV) systems can be 
categorized into grid-connected systems and stand-alone 
power systems, depending on whether the system is connected 
to an electrical power-generation system. In particular, in the 
stand-alone power system, the demand for solar streetlights is 
urgently increasing, including low-power light-emitting diode 
(LED) lamps that are used to replace conventional halogen 
security lighting [1]. 

The solar streetlight system consists of solar-panel 
modules that convert solar energy into electricity, a secondary 
battery that stores the developed power, and a stand-alone 
(off-grid) system. The stand-alone system has the following 
advantages: 1) it does not require electric power installation, 
because the commercial power is not connected, and 2) it has 
a CO2-reduction effect because it is operated by PV power 
generation. 

The operation time of the solar streetlight only depends on 
a secondary battery. Days when sunshine time is less than 0.1 
hour are considered sunless days, and solar streetlights should 
be guaranteed to operate for more than three sunless days. 

It is essential to estimate the state of charge (SOC) of lead-
acid batteries in real time for the following reasons. First, we 
must avoid reliance on the initial SOC of the battery. This 
allows more effective control of the power consumption of 

LED lamps. Second, the lead-acid battery is the most 
commonly used energy-storage device for PV systems. 
According to some researchers, lead-acid batteries will survive 
in the future. 

A battery is a device that generates electrical energy 
through a chemical reaction, and it has nonlinear 
characteristics in response to parameters such as the ambient 
temperature, internal resistance, and capacitance. For these 
reasons, it is very difficult to estimate the SOC of a battery 
correctly. 

There are many methods for estimating battery SOC [2]. 
The internal-impedance method estimates the SOC by 
measuring the internal-impedance change according to the 
charging and discharging of the battery. However, it is 
difficult to apply in a state where the cell is reacting, because 
it is very sensitive. The kalman-filter method is difficult to 
apply because of the complexity of the parameters and 
algorithms. The current-integration (CI) method [3] involves 
subtracting the initial SOC value by integrating the actual 
charge and discharge current. However, this method cannot 
estimate the initial SOC, and because of the accumulated 
errors of the leakage current and current sensing over time, 
accurate SOC estimation is impossible. The open-circuit 
voltage (OCV) [4] method involves measuring the voltage in 
the no-load state. However, this method is difficult to apply to 
real-time systems because it uses the measured OCV at the 
chemical equilibrium inside the battery. 

Neural networks have proven to be a promising paradigm 
for intelligent systems. They have been trained to perform 
complex functions in various fields, such as pattern 
recognition, identification, and classification [5]. Their ability 
to learn complex nonlinear input/output relationships, their use 
of sequential training procedures, and their adaptability to data 
are three outstanding characteristics of neural networks. Some 
popular modules of neural networks have shown abilities of 
associative memory and learning [6-8]. To allow the network 
to perform a specific classification and clustering task 
efficiently, the learning process comprises updating the 
network architecture and modifying the weights between the 
neurons. The neural network can efficiently model a variety of 
input and output relationships. Compared with procedural 
models, it has the advantage of a shorter execution time [9, 
10]. 

In this paper, SOC estimation methods for a lead-acid 
battery using a feed-forward neural network (FFNN), a 
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recurrent neural network (RNN), and an adaptive neuro-fuzzy 
inference system (ANFIS) were proposed. The FFNN and 
RNN models were applied with three different training 
methods: gradient descent (GD), scaled conjugate gradient 
(SCG), and levenberg–marquardt (LM), under the same 
network configuration. The ANFIS model was applied with a 
hybrid training method. Also, we compared the performance 
of the different networks. 

In Section II, research on battery SOC estimation is 
introduced. In Section III, neural network based battery SOC 
estimation methods were proposed. In Section IV, 
experimental results for the FFNN, RNN, and ANFIS models 
were proposed. Finally, the paper is concluded in Section V. 

II. STUDY ON BATTERY SOC ESTIMATION 

A. Open Circuit Voltage Method 

The open circuit voltage (OCV) method is widely known 
as a battery SOC estimation method. The OCV method is very 
accurate in estimating the SOC when the lead-acid battery 
reaches the stabilization phase. In addition, data must be 
constructed through SOC-OCV relationship experiments. 
Although estimating the SOC from a battery is one of the most 
effective methods for estimating the SOC using OCV, this 
method requires a condition in which the circuit is opened or 
no current flows, and it takes time to wait for the battery to 
stabilize internally. For this reason, this method is difficult to 
use in real-time estimation. 

B. Current Integration Mehtod 

The current integration (CI) method is a real-time battery 
SOC estimation method based on CI. The SOC at time 𝑡 is 
shown in (1), and the basic principle of the CI method is to 

add all the charges flowing into and out of the battery in terms 
of ampere-hours [11]. The CI method requires determining the 
initial SOC and performing accurate current measurement. 
Although the initial SOC can be estimated via the CI method 
using the OCV-SOC data sheet, the OCV-SOC data sheet 
becomes inaccurate as the battery ages. Thus, It is needed to 
renew the data sheet to perform accurate battery SOC 
estimation. In addition, there is the disadvantage of 
accumulated errors over time. 

    𝑡       𝑡   ∫
      

  

 

  
            (1) 

Where, 𝑡  is the initial time,   𝑡  is the battery current, and 
   is the nominal capacity of the battery. 

III. PROPOSED SOC ESTIMATION METHODS BASED ON 

NEURAL NETWORK 

In this paper, we propose methods for estimating the lead-
acid battery SOC using an FFNN, an RNN, and an ANFIS. To 
perform lead-acid battery SOC estimation through the neural 
networks, we selected the voltage and the current as input 
parameters for these models. The reason for using these two 
parameters is that they can be measured easily, and have 
important relationships with the battery SOC. A schematic 
diagram of the lead-acid battery SOC estimation methods 
based on the proposed neural networks is shown in Fig. 1. 
Also, SOC at time 𝑡 is defined as shown in (2) by us, to set the 
battery SOC range as 0% to 100% [12]. 

    𝑡       𝑡   ∫
      

  

 

  
            (2) 

Where, 𝑡  is the initial time,   𝑡  is the battery current, and 
   is the measured capacity of the battery. 

 

Fig. 1. Schematic Diagram of the Neural Network-based Lead-Acid Battery SOC Estimation. 
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A. Feed-Forward Neural Network 

The feed-forward neural network (FFNN) is a multilayer 
neural network with one or more hidden layers. The basic 
structure is composed of an input layer, a hidden layer, and an 
output layer, as shown in Fig. 2. Each layer is composed of 
nodes (neurons) and the weights connected between each 
neuron. 

 

Fig. 2. Structure of the FFNN. 

The input pattern is multiplied by the weights between the 
input layer and the hidden layer, and it passes through the 
activation function of the hidden layer. The output of node j in 
the hidden layer at epoch    and output of node k in the output 
layer at epoch  , as given by (3) and (4). 

         ∑             
                  (3) 

Where,   is the number of input samples, and    is the 

activation function of the hidden node  . 

         ∑             
                   (4) 

Where,   is the number of hidden nodes,    is the 
activation function of the output node  . 

The error of the output pattern for the target pattern at 
output node k at epoch   is defined by (5). The error is 
calculated and the weight is modified again through the 
backpropagation method. As this process repeats, it is 
corrected to the optimal weight to obtain the target output 
pattern using the input pattern. If this model is generalized 
well, we can obtain the target pattern for un-learned input 
patterns. 

                               (5) 

Where,       is the target value, and       is the output 
value at output node k at epoch  . 

B. Recurrent Neural Network 

The recurrent neural network (RNN) is a representative 
model for processing sequence data. It differs from the 
generalization model of the existing FFNN structure, as shown 
Fig. 3. The most important feature of an RNN is that it has the 
state of the hidden layer at time 𝑡, as shown in (6).  

  𝑡       𝑡       𝑡                      (6) 

 
Fig. 3. Structure of the RNN. 

Where,   𝑡     represents the activation values of the 
hidden layer at time 𝑡   , which are replicated at time 𝑡 and 
accumulate past information,    is the activation function of 
the hidden layer,   𝑡  is the input at time 𝑡,     is the weight 
matrix between   𝑡  and   𝑡 , and     is the connection 
matrix between   𝑡     and   𝑡 . The output at time 𝑡  as 
shown in (7). 

  𝑡       𝑡                      (7) 

Where,     is the activation function of the output layer, 
and     is the weight matrix between   𝑡  and y 𝑡 . 

C. Adaptive Neuro Fuzzy Inference System 

In the adaptive nuero fuzzy inference system (ANFIS) 
model [13], the sugeno fuzzy model is a systematic method 
for generating fuzzy rules from the input data and the output 
data sets. It uses a hybrid learning method, which combines 
the least-squares estimator and the GD method. The hybrid 
learning method has the advantage of converging quickly [14]. 

As shown in Fig. 4, the ANFIS is divided into six layers: 
the input layer, fuzzification layer, rule layer, normalization 
layer, defuzzification layer, and summation neuron layer. 
Term    represents the input values,    and    are fuzzy sets, 
   is the output function, and y is the output at epoch  , as 
shown in (8). 

                      ⋯                           (8) 

Where,    ,    , and     are the sets of arguments for rule 
 .  

 
Fig. 4. Structure of the ANFIS. 
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In the ANFIS learning algorithm, each epoch is composed 
of a forward calculation and a backward calculation. In the 
forward calculation, the training set of the input pattern is 
input to the ANFIS, the neuron output is calculated for each 
layer, and the rule consequent factor is obtained via least-
squares estimation. 

1) GD training method: The gradient descent (GD) 

method minimizes the error between the target output and the 

output value by adjusting weights. The error gradient is 

transmitted in the reverse direction at the  th
 output node at 

epoch   and is expressed as (9) 

        ̇                      (9) 

Where,                     and   ̇     is the 
derivative of the activation function of output node k at epoch 
 . 

The slope and the weight (     of the cost function for the 

weight between the hidden layer and the output layer are 
improved at the    th

 epoch to (11). 

∆         𝜂                                                         (10) 

                ∆                                              (11) 

Where, ∆       is the weight improvement amount 

between the  th
 hidden node and the  th

 output node at epoch 
 , and 𝜂 is the learning rate. 

Similarly, the error signal at the  th
 hidden node and the 

adjustment of the weight (   ) between the input layer and the 

hidden layer at the    th
 epoch is as follows (12),(13), and 

(14). 

         ̇    ∑          
 
               (12) 

∆         𝜂                                                           (13) 

                ∆                                               (14) 

Where, ∆       is the weight improvement amount 

between the  th
 input node and the  th

 hidden node, and       

is the error gradient that is reversed from the hidden layer to 
the input layer at epoch  . 

2) SCG training method: The scaled conjugate gradient 

(SCG) training method is known to be effective for large 

problems. It uses the second-order information, without the 

line-search process. Thus, amount of using memory can be 

reduced by reducing the amount of computation of gradient 

information. The final SCG algorithm is detailed below [15].  

① Choose the weight vector  ̃  and scalars 0< σ ≤  0−4,  

0< λ ≤  0−6, λ̅  0. 

Set  ̃   𝑟̃   𝐸′  ̃       and 𝑠𝑢𝑐𝑐 𝑠𝑠  𝑡𝑟𝑢 . 

② If success = true, calculate the second-order 
information: 

    𝜎𝑝   𝜎/| ̃𝑝|, 

    𝑠̃𝑝   𝐸′( ̃𝑝  𝜎𝑝 ̃𝑝)  𝐸′( ̃𝑝) /𝜎𝑝, 

     𝑝    ̃𝑝
𝑇𝑠̃𝑝. 

③ Scale  𝑝  𝑝    𝑝   λ𝑝  λ̅𝑝 | ̃𝑝|
 
. 

④ If  𝑝 ≤ 0, make the Hessian matrix positive definite:  

         λ̅𝑝  2 λ𝑝   𝑝/| ̃𝑝|
 
   

          𝑝     𝑝   λ𝑝| ̃𝑝|
 
  

         λ𝑝   λ̅𝑝.  

⑤ Calculate the step size: 

         𝜇𝑝    ̃𝑝
𝑇𝑟̃𝑝    

         𝛼𝑝   𝜇p/ 𝑝. 

⑥ Calculate the comparison parameter: 

         ∆𝑝 2 𝑝[𝐸( ̃𝑝)  𝐸( ̃𝑝   𝛼𝑝 ̃𝑝)]/𝜇̃𝑝
 . 

⑦ If ∆   0, a successful reduction in the error can be 
made: 

 ̃𝑝+    ̃𝑝   𝛼𝑝 ̃𝑝, 

     𝑟̃𝑝+    𝐸′  ̃𝑝+  , 

     λ̅𝑝   0  success = true. 

If k mod N = 0, restart the algorithm: 

          ̃𝑝+  𝑟̃𝑝+  

else: 

         𝛽𝑝   |𝑟̃𝑝+ |
 
 𝑟̃𝑝+ 

𝑇 𝑟̃𝑝 /𝜇𝑝, 

          ̃𝑝+  𝑟̃𝑝+ +𝛽𝑝 ̃𝑝. 

If ∆𝑝 0.  , reduce the scale parameter: 

         λ𝑝   
 

4
 λ𝑝. 

else: 

          λ̅𝑝  λ𝑝  

success = false. 

⑧ If ∆𝑝< 0.2 , increase the scale parameter: 

          λ𝑝   λ𝑝    𝑝   ∆𝑝 /| ̃𝑝|
 
 . 

⑨ If the steepest descent direction  ̃𝑝  0̃    set p = p + 1 

and go to ②; else, terminate and return  ̃𝑝+  as the desired 

minimum. 

3) LM training method: The levenberg-marquardt (LM) 

training method [16] is a deformation of the Newton method. 

The algorithm has a faster convergence of second orders, 

fewer iterations, and does not need to compute the Hessian 

matrix. For some network models with few parameters, the 

training speed of the algorithm is higher [17]. Let N be the 

vector of the weight and bias of each layer in the iterative 

training is given by (15). The delta N is the adjustment 
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quantity of N, and adjusting N means the regulation of the 

weights and thresholds of each layer in the network; finally, 

the goal of training the network is achieved. 

N = [
          

          
      

            

            
]                     (15) 

P(N) = ∑        
                 (16) 

Where, P(N) is expression function,            
         n          a           . 

       𝑇                     (17) 

        𝑇                         (18) 

Where, E(N) is expressed as      ,       constituent 
vectors, J(N) is the Jacobian matrix given by (19), and S(N) is 
the error function given by (20). 

J(N)=

[
 
 
 
 
      

   

      

   

      

   

      

   

      

   

      

   

      

   

      

   

      

   ]
 
 
 
 

               (19) 

S(N)= ∑   
 
                          (20) 

Because the LM algorithm is an improved form of the 
Gauss Newton method, ∆  is given as shown in (21). 

∆   𝑇   𝐸     𝑇        𝜇  −               (21) 

Where, I is the unit matrix, and 𝜇  0 is a constant. 

When 𝜇 = 0 is used for the Gauss Newton method, when 
larger, LM approaches the small-step GD method. For 
training, the modification factor is changed from 𝜇 to  . If the 
training fails, 𝜇  is increase or, decrease it. The solution of  
 𝑇   𝐸     𝑇        𝜇  − always exists, because of it is 
positive value. Thus, the LM algorithm is superior to the 
Gauss Newton method. The LM algorithm steps are as 
follows. 

① The allowable values, coefficients, thresholds, weights of 
error training, and k = 0 (k is the number of iterations) are 
initialized. 

② Calculate the output of network and the expression function 
P(N) and Jacobian matrix J(N). 

③ Calculate ∆ . 

④ If P(N) <  , the end; otherwise, use N + ∆  as the weights 

and thresholds to recalculate the expression function P(N). 

When P(N) is less than the P(N) of ②, set 𝜇  𝜇/  and p = p 

+ 1, and return to ②; otherwise, set 𝜇  𝜇     and return to ③. 

IV. EXPERIMENT RESULTS 

A. Data-Acquisition Environment 

We set up the experimental environment to obtain the real 
data required for lead-acid battery SOC estimation, as shown 
in Fig. 5. 

 
Fig. 5. Experimental Setup. 

TABLE I.  SPECIFICATIONS OF EXPERIMENTAL EQUIPMENT 

Item Specification Quantity 

Power 

supply 

Model: UP-150DT 

Max values: 5 A/30 V (DUAL) 
1EA 

Lead-acid 

battery 

Model: KB100-12 

Nominal capacity: 12 V, 100 Ah 
1EA 

Electronic 

load 

Model: PEL-300 

Power: 1–300 W 

C.V mode: 3–6 V 
C.C mode: 6 mA–60 A 

1EA 

The experimental environment composed of a lead-acid 
battery, an electronic load, a power supply, a battery 
controller, and a PC. Further, by connecting the battery 
controller and the PC in series, the real-time battery data are 
monitored and collected by the PC. The power supply 
performs battery charging, and the electronic load performs 
battery discharging. The battery controller includes a 
protection function for over-charge or over-discharge of the 
battery and monitoring of the current and voltage of the 
battery in real time. The detailed specifications of the 
experimental equipment are shown in TABLE I. 

 
Fig. 6. One Cycle of Discharge: (A) Current, (B) Voltage, and (c) Voltage 

Against the SOC. 
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In addition, the collected data are nominalized to a range 
of between -1 and 1 for the positive effect that the network 
model has faster convergence in training, as shown in (22). 

   
   −      

     +    
             (22) 

Where,       and      are the maximum and minimum 
values of x from the data that we collected. 

A solar controller was used to prevent over-charging and 
over-discharging when the data were acquired. The battery 
was discharged at a constant load from the fully charged state 
to the discharge end voltage. The battery voltage range was 
11.1 ~ 12.9. A graph of the battery discharge is shown in Fig. 
6. 

B. Configuration of Network 

The neural network models are implemented and tested by 
using MATLAB. The configuration of the FFNN and RNN 
model is as follows: the input nodes are 2, the output node is 
1, the hidden nodes are 30, the learning rate is 0.01, and the 
training error goal is 0.0005. We used the hyperbolic tangent 
sigmoid function as the activation function of the hidden layer, 
and the linear transfer function as the activation function of 
the output layer. The initial weights were random values. The 
cost function was the mean squared error (MSE) and is given 
by (23). 

  𝐸  
 

 
∑ ∑                

   
 
𝑝           (23) 

Where,   is the number of training sets,       is the  th
 

target value, and       is the output at output node k at epoch 
 .  

The configuration of the ANFIS model is as follows: the 
input nodes are 2, the output node is 1, the membership 
functions are Gaussian, and the number of rule neurons is 25. 
Training is performed until the root-mean-square error 
(RMSE) reaches the error tolerance 0.01, and the RMSE is 
given by (24). 

   𝐸  √
 

 
∑             

𝑝  
 
          (24) 

Where,   is the number of training sets, and      and 
     are the target value and output value at epoch  . 

C. SOC Estimation Results 

We used the data obtained from the experimental setup 
presented in Section 4.1 and compared the proposed methods 
for estimation of the lead-acid battery SOC. First, the FFNN 
model was tested by applying three training modes, and the 
SOC estimation results are shown in Fig. 7, Fig. 8, and Fig. 9. 

The FFNN-GD method passed 100,000 epochs to 
converge to the desired MSE during training, and the test 
MSE was 2.11. FFNN-SCG recorded 1,401 epochs, and the 
MSE was 2.03, which was better than that of FFNN-GD. 
FFNN-LM converged on 35 epochs, and the MSE was 1.78 as 
the test data. Thus, the MSE and epochs were superior to those 
of the other two training methods. 

 
Fig. 7. SOC Estimation using FFNN-GD: (a) SOC and (b) SOC Error. 

 

Fig. 8. SOC Estimation using FFNN-SCG: (a) SOC and (b) SOC Error. 

 
Fig. 9. SOC Estimation using FFNN-LM: (a) SOC and (b) SOC Error. 

Second, the RNN model was tested by applying the same 
three training modes, and the SOC estimation results are 
shown in Fig. 10, Fig. 11, and Fig. 12. The RNN-GD method 
passed 100,000 epochs to converge to the desired MSE during 
training, and the test MSE was 1.67. The RNN-SCG recorded 
764 epochs, and the MSE was 1.19, which was better than that 
of the RNN-GD method. RNN-LM converged to epochs. The 
MSE of 1.08 was better than those of RNN-GD and RNN-
SCG. 
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Fig. 10. SOC Estimation using RNN-GD: (a) SOC and (b) SOC Error. 

 
Fig. 11. SOC Estimation using RNN-SCG: (a) SOC and (b) SOC Error. 

 
Fig. 12. SOC Estimation using RNN-LM: (a) SOC and (b) SOC Error. 

Finally, SOC estimation was performed with ANFIS using 
a hybrid training method, and the results are shown in Fig. 13. 
The training was completed in only one epoch, and the MSE 
was 1.82 as a result of the SOC estimation with test samples. 
All the experimental results are comprehensively compared in 
Fig. 14 and TABLE II. 

 
Fig. 13. SOC Estimation using ANFIS-Hybrid: (a) SOC and (b) SOC Error. 

 
Fig. 14. Comparison of the SOC Estimation Error. 

TABLE II.  COMPARISON OF TRAINING EPOCHS AND MSE 

Para-

meter 

Network model 

FFNN RNN ANFIS 

GD SCG LM GD SCG LM Hybrid 

Epochs 
Over 
100, 

000 

1,401 35 
Over 
100, 

000 

767 6 1 

MSE 2.11 2.03 1.78 1.67 1.19 1.08 1.82 

V. EXPERIMENT RESULTS 

Three intelligent models (FFNN, RNN, and ANFIS) for 
estimating the lead-acid battery SOC in PV systems were 
presented. Additionally, we compared the proposed methods 
with regard to the MSE and epochs. 

The experimental results are as follows. For the FFNN and 
RNN, we used three training methods and found that FFNN-
LM (MSE of 1.78, 35 epochs) and RNN-LM (MSE of 1.08, 6 
epochs) demonstrated excellent performance. The ANFIS 
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used the hybrid learning method with GD, and according to 
the least-squares method, the MSE was 1.82, with 1 epoch. 
Moreover, the convergence speed was the highest among all 
the models. In summary, RNN-LM can learn at a high speed 
and is the most accurate among all the methods; thus, the 
RNN-LM method is suitable for estimating the lead-acid 
battery SOC because it can be generalized to the greatest 
extent. In a future study, the proposed methods will be applied 
to a lithium battery. 
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