BDioAacsAa

W Heet R FE W 1 S D M S H ANEEE S

International Journal of Advanced Computer Science and Applications

Volume 11 Issue 3

March 2020

ISSN 2156-5570(0nline)
ISSN 2158-107X(Print)

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 3, 2020

Editorial Preface

It may be difficult to imagine that almost half a century ago we used computers far less sophisticated than current
home desktop computers to put a man on the moon. In that 50 year span, the field of computer science has
exploded.

Computer science has opened new avenues for thought and experimentation. What began as a way to simplify the
calculation process has given birth to fechnology once only imagined by the human mind. The ability to communicate
and share ideas even though collaborators are half a world away and exploration of not just the stars above but the
internal workings of the human genome are some of the ways that this field has moved at an exponential pace.

At the International Journal of Advanced Computer Science and Applications it is our mission to provide an outlet for
quality research. We want to promote universal access and opportunities for the international scientific community to
share and disseminate scientific and technical information.

We believe in spreading knowledge of computer science and its applications to all classes of audiences. That is why we
deliver up-to-date, authoritative coverage and offer open access of all our articles. Our archives have served as a
place to provoke philosophical, theoretical, and empirical ideas from some of the finest minds in the field.

We utilize the talents and experience of editor and reviewers working at Universities and Instifutions from around the
world. We would like to express our gratitude to all authors, whose research results have been published in our journal,
as well as our referees for their in-depth evaluations. Our high standards are maintained through a double blind review
process.

We hope that this edition of IJACSA inspires and entices you to submit your own conftributions in upcoming issues. Thank
you for sharing wisdom.

Thank you for Sharing Wisdom!

Managing Editor

IJACSA

Volume 11 Issue 3 March 2020

ISSN 2156-5570 (Online)

ISSN 2158-107X (Print)

©2013 The Science and Information (SAI) Organization

(i)

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 3, 2020

Editorial Board
Editor-in-Chief

Dr. Kohei Arai - Saga University
Domains of Research: Technology Trends, Computer Vision, Decision Making, Information Retrieval,
Networking, Simulation

Associate Editors

Chao-Tung Yang

Department of Computer Science, Tunghai University, Taiwan

Domain of Research: Software Engineering and Quality, High Performance Computing, Parallel and Distributed
Computing, Parallel Computing

Elena SCUTELNICU
“Dunarea de Jos" University of Galati, Romania
Domain of Research: e-Learning, e-Learning Tools, Simulation

Krassen Stefanov

Professor at Sofia University St. Kliment Ohridski, Bulgaria

Domains of Research: e-Learning, Agents and Multi-agent Systems, Artificial Intelligence, Big Data, Cloud
Computing, Data Retrieval and Data Mining, Distributed Systems, e-Learning Organisational Issues, e-Learning
Tools, Educational Systems Design, Human Computer Interaction, Internet Security, Knowledge Engineering and
Mining, Knowledge Representation, Ontology Engineering, Social Computing, Web-based Learning Communities,
Wireless/ Mobile Applications

Maria-Angeles Grado-Caffaro
Scientific Consultant, Italy
Domain of Research: Electronics, Sensing and Sensor Networks

Mohd Helmy Abd Wahab
Universiti Tun Hussein Onn Malaysia
Domain of Research: Intelligent Systems, Data Mining, Databases

T. V. Prasad

Lingaya's University, India

Domain of Research: Intelligent Systems, Bioinformatics, Image Processing, Knowledge Representation, Natural
Language Processing, Robotics

(i)

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 3, 2020

CONTENTS

Paper 1: Apple Carving Algorithm to Approximate Traveling Salesman Problem from Compact Triangulation of Planar
Point Sets

Avuthors: Marko Dodig, Milton Smith
PAGE1 -7

Paper 2: Real-Time Cryptocurrency Price Prediction by Exploiting loT Concept and Beyond: Cloud Computing, Data
Parallelism and Deep Learning

Authors: Ajith Premarathne, Malka N. Halgamuge, R. Samarakody, Ampalavanapillai Nirmalathas
PAGE8-16

Paper 3: The New High-Performance Face Tracking System based on Detection-Tracking and Tracklet-Tracklet
Association in Semi-Online Mode

Authors: Ngoc Q. Ly, Tan T. Nguyen, Tai C. Vong, Cuong V. Than
PAGE 17 - 28

Paper 4: Mobile Sensor Node Deployment Strategy by using Graph Structure based on Estimation of Communication
Connectivity and Movement Path

Authors: Koji Kawabata, Tsuyoshi Suzuki
PAGE 29 -34

Paper 5: Classification of Malignant and Benign Lung Nodule and Prediction of Image Label Class using Multi-Deep
Model

Authors: Muahammad Bilal Zia, Zhao Juan Juan, Xujuan Zhou, Ning Xiao, Jiawen Wang, Ammad Khan
PAGE 35 - 41

Paper 6: ECG and EEG Pattern Classifications and Dimensionality Reduction with Laplacian Eigenmaps
Avuthors: Monica Fira, Liviv Goras
PAGE 42 - 48

Paper 7: A Solution to the Hyper Complex, Cross Domain Reality of Artificial Intelligence: The Hierarchy of Al
Authors: Andrew Kear, Sasha L. Folkes
PAGE 49 - 59

Paper 8: An Ontology Driven ESCO LOD Quality Enhancement
Authors: Adham Kahlawi
PAGE 60-70

Paper 9: Implementation of a Proof of Concept for a Blockchain-based Smart Contract for the Automotive Industry in
Mauritius

Authors: Keshav Luchoomun, Sameerchamd Pudaruth, Somveer Kishnah
PAGe 71 - 81

Paper 10: Method for Rainfall Rate Estimation with Satellite based Microwave Radiometer Data

Avuthors: Kohei Arai
PAGE 82 — 91

(iii)

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 3, 2020

Paper 11: Image-based Individual Cow Recognition using Body Patterns

Authors: Rotimi-Williams Bello, Abdullah Zawawi Talib, Ahmad Sufril AzZlan Mohamed, Daniel A. Olubummo,
Firstman Noah Otobo

PAGE 92 — 98

Paper 12: Modeling Network Security: Case Study of Email System
Authors: Sabah Al-Fedaghi, Hadeel Alnasser
PAGE 99 -107

Paper 13: Usability Study of Smart Phone Messaging for Elderly and Low-literate Users
Avuthors: Rajibul Anam, Abdelouahab Abid
PAGE 108 =115

Paper 14: Improved Control Strategies of Eleciric Vehicles Charging Station based on Grid Tied PV/Battery System
Avuthors: Abdelilah Hassoune, Mohamed Khafallah, Abdelouahed Mesbabhi, Tarik Bouragba
PAGE116-124

Paper 15: Problem based Learning with Information and Communications Technology Support: An Experience in the
Teaching-Learning of Matrix Algebra

Authors: Norka Bedregal-Alpaca, Olha Sharhorodska, Doris Tupacyupanqui-Jaen, Victor Corneko-Aparicio
PAGE 125 -130

Paper 16: Project based Learning Application Experience in Engineering Courses: Database Case in the Professional
Career of Systems Engineering

Avuthors: César Baluarte-Araya
PAGE 131 -140

Paper 17: Heart Rate Monitoring with Smart Wearables using Edge Computing
Authors: Stephen Dewanto, Michelle Alexandra, Nico Surantha
PAGE 141 -148

Paper 18: Prediction of Prostate Cancer using Ensemble of Machine Learning Techniques
Avuthors: Oyewo O.A, Boyinbode O.K
PAGE 149 -154

Paper 19: WoT Communication Protocol Security and Privacy Issues

Avuthors: Sadia Murawat, Fahima Tahir, Maria Anjum, Mudasar Ahmed Soomro, Saima Siraj, Zojan Memon,
Anees Muhammad, Khuda Bux

PAGE 155 -161

Paper 20: Smart Energy Control Internet of Things based Agriculture Clustered Scheme for Smart Farming

Avuthors: Sabir Hussain Awan, Sheeraz Ahmed, Zeeshan Najam, Muhammad Yousaf Ali Khan, Asif Nawaz,
Muhammad Fahad, Muhammad Tayyab, Atif Ishtiaq

PAGE 162 -169
Paper 21: Video Genre Classification using Convolutional Recurrent Neural Networks

Authors: K Prasanna Lakshmi, Mihir Solanki, Jyothi Swaroop Dara, Avinash Bhargav Kompalli
PAGE 170-176

(iv)

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 3, 2020

Paper 22: Mobility Management Challenges and Solutions in Mobile Cloud Computing System for Next Generation
Networks

Authors: L. Pallavi, A. Jagan, B. Thirumala Rao
PAGE 177 -192

Paper 23: State-of-the-Art Reformation of Web Programming Course Curriculum in Digital Bangladesh
Authors: Susmita Kar, Md. Masudul Islam, Mijanur Rahaman
PAGE 193 - 201

Paper 24: Improving Performance of the Multiplexed Colored QR Codes
Authors: Islam M. El-Sheref, Fatma A. El-Licy, Ahmed H. Asad
PAGE 202 - 204

Paper 25: An Enhanced Twitter Corpus for the Classification of Arabic Speech Acts
Authors: Majdi Ahed, Bassam H. Hammo, Mohammad A. M. Abushariah
PAGE 207 - 215

Paper 26: Recognition of Image in Different Cameras using an Improved Algorithm in Viola-Jones
Authors: Washington Garcia - Quilachamin, Luzmila Pro - Concepcién
PAGE 216 — 221

Paper 27: An Improved RDWT-based Image Steganography Scheme with QR Decomposition and Double Entropy
Avuthors: Ke-Huey Ng, Siau-Chuin Liew, Ferda Ernawan
PAGE 222 - 231

Paper 28: Spectrum Occupancy Measurement of Cellular Spectrum and Smart Network Sharing in Pakistan

Authors: Aftab Ahmed Mirani, Sajjad Ali Memon, Saqib Hussain, Muhammad Aamir Panhwar, Syed Rizwan Ali
Shah

PAGE 232 - 243

Paper 29: Analysis on the Requirements of Computational Thinking Skills to Overcome the Difficulties in Learning
Programming

Avuthors: Karimah Mohd Yusoff, Noraidah Sahari Ashaari, Tengku Siti Meriam Tengku Wook, Noorazean Mohd Ali
PAGE 244 - 253

Paper 30: Adapted Lesk Algorithm based Word Sense Disambiguation using the Context Information
Avuthors: Manish Kumar, Prasenjit Mukherjee, Manik Hendre, Manish Godse, Baisakhi Chakraborty
PAGE 254 - 260

Paper 31: An Application of Zipf's Law for Prose and Verse Corpora Neutrality for Hindi and Marathi Languages
Avuthors: Prafulla B. Bafna, Jatinderkumar R. Saini
PAGE 261 - 265

Paper 32: Logical Intervention in the Form of Work Breakdown Strategy using Object Constraint Language for e-
Commerce Application

Avuthors: Shikha Singh, Manuj Darbari
PAGE 266 - 271

Paper 33: Adaptive Scheduling Design for Time Slotted Channel Hopping Enabled Mobile Adhoc Network

Authors: Sridhara S.B, Ramesha M, Veeresh Patil
PAGE 272 - 277

V)

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 3, 2020

Paper 34: JeddahDashboard (JDB): Visualization of Open Government Data in Kingdom of Saudi Arabia
Authors: Mashael Khayyat
PAGE 278 — 282

Paper 35: Optimizing Genetic Algorithm Performance for Effective Traffic Lights Control using Balancing Technique
(GABT)

Avuthors: Mahmoud Zaki Iskandarani
PAGE 283 — 288

Paper 36: A New Approach for Multi-Level Evaluation of Strategic Educational Goals
Authors: Mohammad Alhaj, Mohammad Hassan, Abdullah Al-Refai
PAGE 289 — 298

Paper 37: A Modified Weight Optimization for Arlificial Higher Order Neural Networks in Physical Time Series
Authors: Noor Aida Husaini, Rozaida Ghazali, Nureize Arbaiy, Norhamreeza Abdul Hamid, Lokman Hakim Ismail
PAGE 299 — 308

Paper 38: Remote Sensing Satellite Image Clustering by Means of Messy Genetic Algorithm
Avuthors: Kohei Arai
PAGE 309 -314

Paper 39: Improve Speed Real-Time Rendering in Mixed Reality HOLOLENS during Training
Authors: Rafeek Mamdouh, Hazem M. El-Bakry, Alaa Riad, Nashaat El-Khamisy
PAGE 315 - 321

Paper 40: Model of Tools for Requirements Elicitation Process for Children’s Learning Applications
Authors: Mira Kania Sabariah, Paulus Insap Santosa, Ridi Ferdiana
PAGE 322 — 328

Paper 41: Intelligent System for Price Premium Prediction in Online Auctions
Authors: Mofareah Bin Mohamed, Mahmoud Kamel
PAGE 329 - 334

Paper 42: Applying Social-Gamification for Interactive Learning in Tuberculosis Education
Avuthors: Dhana Sudana, Andi W.R. Emanuel, Suyoto, Ardorisye §. Fornia
PAGE 335 - 341

Paper 43: New Approach for the Detection of Family of Geometric Shapes in the Islamic Geometric Patterns
Authors: Ait Lahcen Yassine, Jali Abdelaziz, El Oirrak Ahmed, Abdelmalek. Thalal, Youssef. Aboufadil, M. A.

Elidrissi R

PAGE 342 — 348

Paper 44: Place-based Uncertainty Prediction using loT Devices for a Smart Home Environment
Authors: Amr Jadi
PAGE 349 - 359

Paper 45: “Onto-Computer-Project”’, a Computer Project Domain Ontology : Construction and Validation

Avuthors: Mejri Lassaad, Hanafi Raja, Henda Hajjami Ben Ghezala
PAGE 360 - 366

(vi)

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 3, 2020

Paper 46: Comparison of ltem Difficulty Estimates in a Basic Statistics Test using tm and CTT Software Packages in R
Avuthors: Jonald L. Pimentel, Marah Luriely A. Villaruz
PAGE 367 - 372

Paper 47: Mosques Smart Domes System using Machine Learning Algorithms
Authors: Mohammad Awis Al Lababede, Anas H. Blasi, Mohammed A. Alsuwaiket
PAGE 373 — 378

Paper 48: Accident Detection and Disaster Response Framework Utilizing loT
Authors: Shoaib ul Hassan, Jingxia CHEN, Tariq Mahmood, Ali Akbar Shah
PAGE 379 - 385

Paper 49: Design and Development of Al-based Mirror Neurons Agent towards Emotion and Empathy

Authors: Faisal Rehman, Adeel Munawar, Agsa Iftikhar, Awais Qasim, Jawad Hassan, Fouzia Samiullah,
Muhammad Basit Ali Gilani, Neelam Qasim

PAGE 386 — 395

Paper 50: Effect of Header-based Features on Accuracy of Classifiers for Spam Email Classification
Authors: Priti Kulkarni, Jatinderkumar R. Saini, Haridas Acharya
PAGE 396 - 401

Paper 51: Enhancing the Quality of Service of Cloud Computing in Big Data using Virtual Private Network and Firewall in
Dense Mode

Authors: Hussain Shah, Aziz ud Din, Abizar, Adil Khan, Shams ud Din
PAGE 402 -412

Paper 52: Cloud Computing Adoption at Higher Educational Institutions in the KSA for Sustainable Development
Authors: Ashraf Ali
PAGE413-419

Paper 53: Automatic Assessment of Performance of Hospitals using Subjective Opinions for Sentiment Classification
Avuthors: Muhammad Badruddin Khan
PAGE 420 — 427

Paper 54: Priority based Energy Distribution for Off-grid Rural Electrification
Avuthors: Siva Raja Sindiramutty, Chong Eng Tan, Sei Ping Lau
PAGE 428 — 436

Paper 55: Beyond Sentiment Classification: A Novel Approach for Utilizing Social Media Data for Business Intelligence
Authors: Ibrahim Said Ahmad, Azuraliza Abu Bakar, Mohd Ridzwan Yaakub, Mohammad Darwich
PAGE 437 - 441

Paper 56: Efficient Mining of Maximal Bicliques in Graph by Pruning Search Space
Authors: Youngtae Kim, Dongyul Ra
PAGE 442 - 451

Paper 57: Nabiha: An Arabic Dialect Chatbot

Avuthors: Dana Al-Ghadhban, Nora Al-Twairesh
PAGE 452 — 459

(vii)

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 3, 2020

Paper 58: Personality Classification from Online Text using Machine Learning Approach

Avuthors: Alam Sher Khan, Hussain Ahmad, Muhammad Zubair Asghar, Furgan Khan Saddozai, Areeba Arif,
Hassan Ali Khalid

PAGE 460 —-476

Paper 59: Control BLDC Motor Speed using PID Controller
Authors: Md Mahmud, S. M. A. Motakabber, A. H. M. Zahirul Alam, Anis Nurashikin Nordin
PAGE 477 — 481

Paper 60: Recurrent Neural Networks for Meteorological Time Series Imputation
Authors: Anibal Flores, Hugo Tito, Deymor Centty
PAGE 482 - 487

Paper é1: Enhance the Security and Prevent Vampire Attack on Wireless Sensor Networks using Energy and Broadcasts
Threshold Values

Avuthors: Hesham Abusaimeh
PAGE 488 — 491

Paper 62: Automated Measurement of Hepatic Fat in T1-Mapping and DIXON MRI as a Powerful Biomarker of Metabolic
Profile and Detection of Hepatic Steatosis

Avuthors: Khouloud AFFI, Mnaouer KACHOUT
PAGE 492 - 497

Paper 63: Producing Standard Rules for Smart Real Estate Property Buying Decisions based on Web Scraping Technology
and Machine Learning Techniques

Authors: Haris Ahmed, Tahseen Ahmed Jilani, Waleej Haider, Syed Noman Hasany, Mohammad Asad Abbasi,
Ahsan Masroor

PAGE 498 - 505

Paper é64: TADOC : Tool for Automated Detection of Oral Cancer
Authors: Khalid Nazim Abdul Sattar
PAGE 506 - 513

Paper é5: Deep Learning based, a New Model for Video Captioning
Authors: Elif Gista Ozer, lliteber Nur Karapinar, Sena Basbug, Simeyye Turan, Anil Utku, M. Ali Akcayol
PAGE 514-519

Paper 66: Optimized Approach in Requirements Change Management in Geographically Dispersed Environment (GDE)

Authors: Shahid N. Bhatti, Frnaz Akbar, Mohammad A. Alqarni, Amr Mohsen Jadi, Abdulrahman A. Alshdadi,
Abdulah J. Alzahrani

PAGE 520 — 525

Paper 67: Data Mining for Student Advising
Avuthors: Hosam Alhakami, Tahani Alsubait, Abdullah Aljarallah
PAGE 526 — 532

Paper 68: Climate Change Adaptation and Resilience through Big Data

Avuthors: Md Nazirul Islam Sarker, Bo Yang, Yang Lv, Md Enamul Huq, M M Kamruzzaman
PAGE 533 - 539

(viii)

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 3, 2020

Paper 69: Enhanced Accuracy of Heart Disease Prediction using Machine Learning and Recurrent Neural Networks
Ensemble Majority Voting Method

Authors: Irfan Javid, Ahmed Khalaf Zager Alsaedi, Rozaida Ghazali
PAGE 540 - 551

Paper 70: Temporal Analysis of GDOP to Quantify the Benefits of GPS and GLONASS Combination on Satellite Geometry
Authors: Claudio Meneghini, Claudio Parente
PAGE 552 - 560

Paper 71: Enhancing Educational Data Mining based ICT Competency among e-Learning Tutors using Statistical
Classifier

Authors: Lalbihari Barik, Ahmad AbdulQadir AIRababah, Yasser Difulah Al-Otaibi
PAGE 561 - 568

Paper 72: Histogram Equalization based Enhancement and MR Brain Image Skull Stripping using Mathematical
Morphology

Authors: Zahid Ullah, Su-Hyun Lee, Donghyeok An
PAGE 569 - 577

Paper 73: Analysis of Web Content Quality Factors for Massive Open Online Course using the Rasch Model
Authors: Wan Nurhayati Wan Ab Rahman, Hazura Zulzalil, Iskandar Ishak, Ahmad Wiraputra Selamat
PAGE 578 - 587

Paper 74: Prediction Intervals based on Doubly Type-ll Censored Data from Gompertz Distribution in the Presence of
Outliers

Authors: S. F. Niazi Alil, Ayed R. A. Alanzi
PAGE 588 - 594

Paper 75: Code Readability Management of High-level Programming Languages: A Comparative Study
Authors: Muhammad Usman Tariq, Muhammad Bilal Bashir, Muhammad Babar, Adnan Sohail
PAGE 595 - 602

Paper 76: CA-PCS: A Cellular Automata based Partition Ciphering System
Authors: Fatima Ezzahra Ziani, Anas Sadak, Charifa Hanin, Bouchra Echandouri, Fouzia Omary
PAGE 603 - 609

Paper 77: Performance Analysis of Machine Learning Techniques for Smart Agriculture: Comparison of Supervised
Classification Approaches

Avuthors: Rhafal Mouhssine, Abdoun Otman, El khatir Haimoudi
PAGE 610-619

Paper 78: Minimal Order Linear Functional Observers Design for Multicell Series Converter
Authors: Mariem Jday, Paul-Etienne Vidal, Joseph Hagg ege
PAGE 620 - 629

Paper 79: Binning Approach based on Classical Clustering for Type 2 Diabetes Diagnosis

Avuthors: Hai Thanh Nguyen, Nhi Yen Kim Phan, Huong Hoang Luong, Nga Hong Cao, Hiep Xuan Huynh
PAGE 630 - 637

(ix)

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 3, 2020

Paper 80: Enhanced Performance of the Automatic Learning Style Detection Model using a Combination of Modified K-
Means Algorithm and Naive Bayesian

Authors: Nurul Hidayat, Retantyo Wardoyo, Azhari SN, Herman Dwi Surjono
PAGE 638 — 648

Paper 81: Improved Candidate Generation for Pedestrian Detection using Background Modeling in Connected Vehicles
Avuthors: Ghaith Al-Refai, Osamah A. Rawashdeh
PAGE 649 - 660

Paper 82: Intelligent Parallel Mixed Method Approach for Characterising Viral YouTube Videos in Saudi Arabia

Authors: Abdullah Alshangqiti, Ayman Bajnaid, Abdul Rehman Gilal, Shuaa Aljasir, Aeshah Alsughayyir, Sami
Albouq

PAGE 661 -671

Paper 83: Predicting Students’ Perfformance of the Private Universities of Bangladesh using Machine Learning
Approaches

Avuthors: Md. Sabab Zulfiker, Nasrin Kabir, Al Amin Biswas, Partha Chakraborty, Md. Mahfujur Rahman
PAGE 672 - 679

Paper 84: Vehicle Routing Optimization for Surplus Food in Nonprofit Organizations
Authors: Ahmad Alhindi, Abrar Alsaidi, Waleed Alasmary, Maazen Alsabaan
PAGE 680 - 685

Paper 85: Development of an Interactive Tool based on Combining Graph Heuristic with Local Search for Examination
Timetable Problem

Authors: Ashis Kumar Mandal
PAGE 686 — 694

Paper 86é: Invariant Feature Extraction for Component-based Facial Recognition
Avuthors: Adam Hassan, Serestina Viriri
PAGE 695 - 698

Paper 87: Feature Selection for Learning-to-Rank using Simulated Annealing

Authors: Mustafa Wasif Allvi, Mahamudul Hasan, Lazim Rayan, Mohammad Shahabuddin, Md. Mosaddek Khan,
Muhammad Ibrahim

PAGE 699 - 705

Paper 88: Software-Defined Networking (SDN) based VANET Architecture: Mitigation of Traffic Congestion
Avuthors: Tesfanesh Adbeb, Wu Di, Muhammad Ibrar
PAGE706-714

Paper 89: Perceived Usability of Educational Chemisiry Game Gathered via CSUQ Usability Testing in Indonesian High
School Students

Authors: Herman Tolle, Muhammad Hafis, Ahmad Afif Supianto, Kohei Arai
PAGE715-724

)

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 3, 2020

Apple Carving Algorithm to Approximate Traveling
Salesman Problem from Compact Triangulation of
Planar Point Sets

Marko Dodig*, Milton Smith?
Industrial, Manufacturing and Systems Engineering

Texas Tech University
Lubbock, TX, USA

Abstract—We propose a modified version of the Convex Hull
algorithm for approximating minimum-length Hamiltonian cycle
(TSP) in planar point sets. Starting from a full compact
triangulation of a point set, our heuristic “carves out” candidate
triangles with the minimal Triangle Inequality Measure until all
points lie on the outer perimeter of the remaining partial
triangulation. The initial candidate list consists of triangles on the
convex hull of a given planar point set; the list is updated as
triangles are eliminated and new triangles are thereby exposed.
We show that the time and space complexity of the “apple
carving” algorithm are O(n?) and O(n), respectively. We test our
algorithm using a well-known problem subset and demonstrate
that our proposed algorithm outperforms nearly all other TSP
tour construction heuristics.

Keywords—TSP; heuristics; combinatorial
computational geometry; compact triangulation

optimization;

I. INTRODUCTION

In this article we examine the following tour-construction
heuristic for the planar TSP: take a compact triangulation of the
planar set and then find the minimum Hamiltonian cycle
embedded in the triangulation by progressively removing
triangles of minimal Triangle Inequality measure until n-2
triangles remain. We call this heuristic “apple carving” as this
descriptor accurately describes the triangle removal process
which is the basis of the algorithm. Possibility of using well-
known triangulations such as Greedy and Delaunay to generate
heuristic tours was already explored by Reinelt [1], Stewart [2],
and Letchford and Pearson [3]. These authors looked at
triangulations as presenting a “good” subset of edges and
utilized well-established TSP solutions engines like
CONCORDE to solve for TSP. Our research is different in that
we (a) utilize newly introduced Greedy Compact Triangulation
(GCT) proposed recently by Dodig and Smith [4], and (b)
utilize a modification of Convex Hull Heuristic on GCT
triangles to approximate TSP.

Our paper is organized as follows. First, we formally define
the TSP and review the present state of its solution algorithms.
Second, we introduce our approach. Third, we present our
experimental methodology and review our experimental
results. Finally, we highlight our conclusions and outline future
research steps.

Il. LITERATURE REVIEW

A. Traveling Salesman Problem

Traveling salesman problem (TSP) is perhaps the best-
known and most-researched problem in combinatorial
optimization. In its general form we are given a collection of
cities and the distance to travel between each pair of them, and
the problem then is to find the shortest route to visit each city
and to return to the starting point [5]. TSP belongs to the class
of NP-hard problems; in other words no polynomial-time
algorithm exists that can solve the problem optimally in
polynomial time, regardless of its complexity (i.e. the number
of cities in the tour). The best result to date is a solution
method, discovered in 1962, that runs in time proportional to
n?2" [6]. TSP has been fascinating both researchers and general
public for more than sixty years. In 1954, three researchers
from Rand Corporation had solved a long-standing public
challenge to find the shortest tour through 48 US state capitals
and DC, shown in Fig. 1 [5].

In purely mathematical terms, TSP is the problem of
finding a Hamiltonian tour (cycle) of minimum weight in a
complete edge-weighted graph. In our research, we consider a
symmetric TSP, or STSP, in that we assume that edge-costs are
symmetric, or, equivalently, that the graph is undirected. A
special case of the TSP is obtained when the vertices of the
graph correspond to points in the Euclidean plane, and distance
between any two points is equal to the Euclidean distance
between the corresponding points. The Euclidean TSP is a
special case of the metric TSP, in which the costs obey the
triangle inequality. Metric TSP was found to be strongly NP-
hard [7]. Related to, but distinct from, the Euclidean TSP is the
planar graph TSP which is the focus of our research. This is the
version of the TSP in which a planar graph G = (V, E) is given,
with weights on the edges of E, and one seeks the minimum
cost tour which uses only edges in E. Not only is this problem
NP-hard, it is NP-hard even to test if a planar graph is
Hamiltonian [7].

There is a multitude of planar TSP solution algorithms; few
are exact algorithms, and many are heuristic algorithms. Since
planar TSP is NP-hard, exact algorithms are exponential and
heuristic algorithms are polynomial; selecting between exact or
heuristic algorithms to solve for TSP presents a clear case of
precision and time trade-off.

1|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

SCIENCE

Fig1. Newsweek Coverage of 49-City Tour through United States [5].

B. Exact Algorithms

Branch-and-bound algorithm is an exact algorithm based
on the IP formulation of TSP. This algorithm consists of two
steps, (a) branching, which means splitting the problem into
sub-problems, and (b) bounding, which means calculating
lower and/or upper bounds for the objective function value of
the sub-problem. The branching is performed in the following
algorithm by separating the current subspace into two parts
using the integrality requirement. Using the bounds,
unpromising sub-problems can be eliminated. LP-relaxation of
the problem is formed by relaxing integer requirements. In the
algorithm, a list of sub-problems is maintained. A sub-problem
is fathomed (totally solved) and removed from the list only
when it has an integer solution that is best so far and becomes
the new incumbent solution, or its optimum LP-solution
objective is worse than the current incumbent value, or its LP-
problem is infeasible.

Held-Karp algorithm is a dynamic programming algorithm
utilizing graph theoretical representation of TSP. In a way, it is
an intelligent brute force method in that it utilizes recursive
formulation to find minimal distance paths between points. It
was proposed independently by Bellman [6] and by Held and
Karp [8]. This algorithm utilizes an optimization property of
TSP in that every sub-path of a path of minimum distance is
itself of minimum distance, which is easily proven by
contradiction. The algorithm computes the solutions of all sub-
problems, starting with the smallest, and looks up solutions
already computed when requiring solutions for smaller
problems. At the end, computing minimum distance tour
means using the final equation to generate the initial node, and
then repeating for all other nodes. Held-Karp is exhaustive, in
that all sub-problems need to be solved; it has the time
complexity of O(2"n?) and the space complexity of O(2™n).

C. TSP Heuristics

In simplest terms, TSP heuristics can be divided into two
distinct categories. Tour construction heuristics execute a
sequence of operations until a valid tour is obtained, at which
point the heuristics stop and report the constructed tour. Tour
improvement heuristics start with a valid tour (an output of a
tour construction heuristic, for example) and iteratively
improve the tour cost, typically via local search, until some
stopping criterion is reached [5]. Solution quality of tour

Vol. 11, No. 3, 2020

improvement techniques far exceeds quality of solutions
achieved by tour constructions [5].

Nearest Neighbor heuristic is perhaps the best-known tour
construction heuristics [9]. It starts with a random city, adds the
nearest non-visited city, and keep adding new non-visited cities
in the same fashion until all cities are included. When all of the
cities are included it returns to the initial city. It has the time
and the space complexity of O(n2) and O(n), respectively [10].

Greedy heuristic gradually constructs a tour by repeatedly
selecting the shortest remaining edge and adding it to the tour
as long as it does not create a cycle with less than n edges nor
increase the degree of any node (city) to more than two [10].
Greedy heuristic has the time complexity of O(nxlogzn), which
makes it more efficient than Nearest Neighbor [10]. The space
complexity of Greedy matches that of Nearest Neighbor
heuristic [10].

Cheapest Insertion heuristic starts with the shortest edge
which becomes the initial sub-tour. Then it selects a city not in
the current sub-tour, having the shortest distance to any one of
the cities in the sub-tour. It finds an edge in the sub-tour such
that the cost of inserting the selected city between the edge
cities will be minimal, and keeps inserting shortest-distance
remaining cities until none remain. Cheapest Insertion has the
time complexity of O(n?xlogzn) and is more computationally
intensive then Nearest Neighbor and Greedy [11].

Convex Hull heuristics starts by finding the convex hull of
a point set and making it an initial sub-tour. For each remaining
point it finds its cheapest insertion, adds the city with the least
cost/increase ratio, and keeps repeating this process with
remaining points until none remain. It is also more
computationally intensive with the time complexity of
0O(n?xlogzn) [12].

Christofides heuristic builds a minimal spanning tree
(MST) of the planar point set. It then creates a minimum-
weight matching (MWM) on points having an odd degree, adds
the MST together with the MWM, creates an Euler cycle from
the combined graph, and finally traverses it taking shortcuts to
avoid already included points. This heuristic has the best worst-
case performance guarantee of all TSP heuristics as it never
produces tours worse than 1.5 times the optimal [13]. On the
other hand, it has the time complexity equal to O(n®) [13].

Match-Twice-and-Stitch heuristic [14] uses two sequential
minimum-weight matchings to construct the cycles. The first
matching returns the usual minimum-cost edge set with each
point incident to exactly one matching edge. The second
matching returns the minimum-cost edge set with each point
incident to exactly one matching while ignoring the edges
found in the first matching. The first phase results in multiple
sub-tours. The second phase stitches the constructed cycles to
form the TSP tour, with the exact (slow) and approximate (fast)
patching procedure to join two cycles. A minimum spanning
tree (MST) calculation determines a way to stitch all cycles
into a tour. It is the best construction heuristics reported, with
the different versions of the heuristic reporting average tour
lengths between 4.8% (slowest) to 7.1% (fastest) over HK
bound. It has the time complexity of O(n?) [14].

2|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

Tour improvement algorithm such as 2-opt removes two
edges from the feasible tour and reconnects the two paths
created if the new tour will be shorter. There is only one way to
reconnect the two paths and still have a valid tour. It continues
removing and reconnecting the tour until no 2-opt
improvements can be found. Algorithm works the same for any
path connecting k points, however the time performance
severely lags starting at 5-opt. Its worst-case performance
guarantee is known, as it is guaranteed to produce results not
more than two times the optimal [10]. The main weakness of
the 2-opt tour improvement heuristic is that it covers local
improvements for pairs of 2 nodes only. This was subsequently
addressed in newer k-opt algorithms, where k > 2, chief among
them the Lin-Kernighan heuristic with the time complexity of
0O(n??) [10].

Solutions generated by TSP heuristics are typically
compared to the Held-Karp (HK) lower bound. This lower
bound is the solution to the LP relaxation of the IP formulation
of the TSP, which can be found in polynomial time by using
the Simplex method and a polynomial constraint-separation
algorithm [15]. A HK lower bound averages about 0.8% below
the optimal tour length [15]; however, its guaranteed lowest
bound is only 2/3 of the optimal tour. Fig. 2 summarizes
typical performance of the most-significant TSP heuristic
algorithms. 2-opt, 3-opt, and Lin-Kernighan heuristics are the
tour improvement heuristics, and all of the others are tour
construction heuristics.

30%

25%

L= 20%
59 20%
0¥
oT o 14%
L 15% 120
© O =70 .
§5 ., 10%
= o (]
e 6% 50,
- H H o
7 0,
0% ’_‘ ’_‘ M/ 0%
'y X o NS
X & & 4@&\ {9@? @5‘\ K & & & o’*‘b
& & & of & &V ’ (&% & 370
E?‘é 6_} @QI (}6\ N .Q%S« 6‘!@
& & oo & N &
< RN & ¢
_;2& &
s <
(N \bq,\“

Fig2. Typical Performance of Best-known Heuristics [10], [14].

I1l. OUR APPROACH

A. Improved Greedy Compact Triangulation (iGCT)

iGCT of a planar point set S is created by GCT Algorithm
[4]. This algorithm progressively inserts most-compact empty
triangles into the triangulation not intersecting empty triangles
in S previously inserted and achieves local optimality by
performing weight-reducing edge flipping [4]. Compactness of
an empty triangle At with area A(At) and perimeter P(At) in
planar point set S is measured as follows [16]:

__ 4AmA(Ar)

A = fane @

Vol. 11, No. 3, 2020

Dodig and Smith showed that GCT approximates
Minimum Weight Triangulation (MWT) in a variety of planar
point set configurations, thereby making its edges compelling
candidates for our proposed TSP heuristic [4]. MWT is defined
as the full triangulation of a planar point set S having the
lowest total edge length out of all full triangulations of a planar
point set S. Dodig and Smith have also confirmed that the
optimal TSP solution is frequently fully embedded in iGCT
(61% of the time), and that the minimum perimeter polygon
fully contained in iGCT is nearly optimal, or 0.36% longer
than optimal. Fig. 3 shows full embeddedness of the optimal
TSP tour in iGCT for berlin52, one of the TSPLIB problems
for which the optimal TSP is known.

B. Apple Carving Algorithm

There are 2n - h - 2 triangles in both iGCT and MWT
triangulations of a planar set S of n points, where h represents
the number of points on the Convex Hull of S, or CH(S) [16].
We know that the perimeter length of CH(S) is less than the
perimeter length of TSP polygon for this planar point set due to
Isoperimetric Inequality principle. Following Steiner proof of
Isoperimetric Inequality, we can “carve out” from CH(S) a
triangle on the perimeter of full triangulation with the lowest
Triangle Inequality Factor and have high degree of confidence
that minimum perimeter polygon is still fully contained in the
resulting partial triangulation. We can continue carving out
eligible triangles with the lowest Triangle Inequality Measure,
until all points are at the perimeter of the partial triangulation.
We give priority to removing triangles whose absolute Triangle
Inequality, or TIL, is not only lowest, but also “optimal”.
“Optimal” TI on any point is defined as the lowest TI of all
triangles containing this point. We consider this method to be
the basis of the “apple carving” algorithm. In fact, this method
is very similar to the Convex Hull heuristics, through Convex
Hull Heuristics does not follow a pre-defined tour building
roadmap such as the one provided by the compact triangulation
[12]. “Apple carving” algorithm pseudocode is given in Fig. 4.

Fig3. Optimal TSP (Shaded) Fully Contained in GCT for berlin52 Problem
[4].

3|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 3, 2020

INPUTS

1. Planar point set S with n points; S has h points on CH(S).
2. iGCT(S) with 2n — h — 2 triangles; each Triangle(a, b, c) and Edge(a, b) in iGCT satisfiesa<b<c

BEGIN Apple Carving Algorithm

1. Initialize variables
2. Import point coordinates
3. Initialize iGCT
FOR each triangle i in iGCT
SimpleTriangle(i) := Triangle(a, b, c)
CountTriangles(a) +=1; CountTriangles(b)+=1; CountTriangles(c) +=1
IF TIA (a, SimpleTriangle(i)) < min_TI (a) THEN
min_TI(a) := TIA(a, SimpleTriangle(i))
ENDIF
CountEdges(a,b) += 1; CountEdges(a,c) += 1; CountEdges(b,c) += 1
Apple < SimpleTriangle(i)
NEXT i
4. Initialize Candidate List
FOR each Edge(a, b)
IF CountEdges(a, b) =1 THEN
CandidatesList <— Edge(a, b)
VisitedCities < a, b
TourLength += Distance(a, b)
ENDIF
NEXT
5. Carve triangles from Polygon (Apple)
change_recorded := 1
WHILE VisitedCities < n AND change_recorded == 1
change_recorded := 0
Let k be the index of a triangle containing the candidate edge Edge(a, b) such that:
a) CountTriangles(a) > 1 AND CountTriangles (b) > 1 AND CountTriangles(c) > 1,
b) Min_TI(c) == TIA(c, SimpleTriangle(k))
c) SimpleTriangle(k) == Triangle(a, b, c) with the min_TI(c) for all triangles satisfying a) and b)
IF SimpleTriangle(k) doesn’t exist THEN
Let k be the index of a triangle containing any candidate edge Edge(a,b) such that:
d) CountTriangles(a) > 1 AND CountTriangles(b)>1 AND CountTriangles(c) > 1,
e) SimpleTriangle(k) = Triangle(a, b, c) with the lowest TIR(c, SimpleTriangle(k)) for all triangles
satisfying d)
ENDIF
Apple — SimpleTriangle(k)
CandidatesList < Edge(a,c), Edge(b,c)
CandidatesList — Edge(a,b)
CountTriangles(a) -= 1; CountTriangles(a) -= 1; CountTriangles(a) -= 1
VisitedCities « ¢
TourLength := TourLength - Distance(a, b) + Distance(a, c) + Distance(b, c)
VisitedCities += 1; change_recorded := 1
WHILE END
6. Correct infeasibility conditions (if any)
IF VisitedCities <n THEN
FOR each point ¢ NOT in VisitedList
Let a and b be points in S such that
f) Edge(a,b) is in CandidatesList,
g) Triangle(a,b,c) has the lowest TIA(c, Triangle(a,b,c)) for any pair of points a and b satisfying f)
VisitedCities «— ¢
CandidatesList « Edge(a,c), Edge(b,c)
CandidatesList — Edge(a,b)
TourLength = TourLength - Distance(a, b) + Distance(a, ¢) + Distance(b, ¢)
VisitedCities += 1
NEXT ¢
ENDIF
7. Record the polygon tour
FOR each Edge(a, b) in CandidatesList
Predecessor(b) := a
NEXT

END Apple Carving Algorithm

Fig4. Apple-Carving Algorithm Pseudocode.

4|Page
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

C. Measure of Sub-optimality

We define 5;1//(5) as the absolute deviation (from the
optimal TSP) of the perimeter length of the polygon found via
“apple carving” algorithm, and express it mathematically as
follows:

PL(P''(5)))-PL(TSP(S))
PL(TSP(S))

efn(s) = x 100%, VS in R? 2)
Where S is a given point set, and P’ is the Hamiltonian
cycle found by the “apple carving” algorithm.

D. Time Complexity

Theorem 1 The time complexity of the “apple-carving”
algorithm is O(n?).

Proof: Step 2 of the “apple carving” algorithm has the time
complexity of O(n), since in this step we initialize arrays of n
points. Step 3 of the “apple carving” algorithm has the time
complexity of O(n), as we also know that there are O(n)
triangles in a full triangulations of a planar point set S of n
points [16]. Step 4 of the “apple carving” algorithm loops
through no more than n candidate edges, and therefore has time
complexity of O(n). Step 5 of the “apple carving” algorithm
removes up to n — h triangles from iGCT. In each removal step,
we evaluate up to 2n — h — 2 candidate triangles that can be
removed. This guarantees time complexity of O(n?) for Step 5.
Step 6 of the “apple carving” algorithm has time complexity of
O(n?). We know this because there are not more than n points
that need to be evaluated against up to n candidate
edges/triangles. Finally, step 7 of the “apple carving” algorithm
assigns predecessors for each of n points in S by looping
through not more than n edges in the candidate lists,
guaranteeing the time complexity of O(n).

This proves that the time complexity of the “apple carving”
algorithm is 40(n) + 20(n?) = O(n?).

Theorem 2 The time complexity of the “apple-carving”
algorithm and iGCT algorithm together is O(n%).

Proof: Time complexity of the stand-alone “apple carving”
algorithm is O(n?. Dodig and Smith proved that the time
complexity of the iGCT algorithm is O(n%) [4].

This proves that the time complexity of the “apple carving”
algorithm is O(n?) + O(n*) = O(n%).

E. Space Complexity

Theorem 3 The space complexity of the “apple-carving”
algorithm is O(n).

Proof: Number of points in a planar point set S is defined
as n. The number of triangles in any full triangulation of S is
known to be 2n — h — 2, where h is the number of points
belonging to CH(S) [17]. The number of edges in any full
triangulation of S is known to be 3n — h — 3, where h is the
number of points belonging to CH(S) [17]. This implies that
the variables in “apple carving” algorithm tracking both visited
cities and candidate edges cannot have the space complexity
greater than O(n).

Vol. 11, No. 3, 2020

This proves that the space complexity of the “apple
carving” algorithm is O(n).

IV. EXPERIMENTAL METHODOLOGY

A. Objective

Our experimental objective was to test the validity of the
proposed tour construction algorithm experimentally by
analyzing how well the length of the resulting Hamiltonian
cycle approximates the length of the optimal TSP.

B. Hypothesis

We hypothesize that the “apple carving” algorithm will
outperform the traditional Convex Hull algorithm. We further
hypothesize that the “apple carving” algorithm will outperform
most of the traditional tour construction heuristics.

C. Data Sets

To perform our experiments, we selected 18 problem sets
from TSPLIB, a well-known online problem library created to
provide researchers with a broad set of test problems from
various sources and properties for which the optimal TSP
solutions are known [18]. We have chosen 11 problem sets
which are given with points in general position (att48,
berlin52, ch130, eil51, eil76, eill01, gr96, grl37, rat99,
rat195, rd100). This was important as point sets in general
position do not have 3 or more co-linear points. We have also
chosen 7 problem sets with a significant number of co-linear
points (lin105, pr76, prl07, prl24, prl36, prl44, ul59). This
was done to test performance of our framework in both point
set configurations.

D. Programming

To achieve our experimental objectives we have
programmed iGCT Algorithm in VBA for Excel. This
algorithm takes a planar point set as an input, and produces a
Hamiltonian cycle of S as an output. It also calculates the
length of P’ found by “apple carving” algorithm in order to
compare to the optimal TSP lengths for each of the problems in
our problem set. All of our experiments were performed on
Latitude 5490 laptop with Intel Core i5-8250U CPU @
1.60GHz with 8GB of RAM, running Windows 10 64-bit
operating system.

V. RESULTS

Experimental results for 18 given problem sets can be
found in Table I.

On average, polygons produced by the “apple carving”
algorithm in our test problems are 8.1% longer than optimal
TSP solutions. For gr137 problem, the absolute error is the
lowest at 1.9%, and for pr124 problem, the error is the highest
recorded at 15.9%. If we exclude point sets of 3 or more co-
linear points, the absolute error drops to the average of 6.1%,
with the maximum error recorded for ch130 problem at 11.2%.

5|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

TABLE I. EXPERIMENTAL RESULTS
Set |S TSP P I
1 att48 108,159 118,702 9.8%
2 berlin52 7,544 7,711 2.2%
3 ch130 6,111 6,793 11.2%
4 eil51 430 453 5.3%
5 eil76 545 578 5.9%
6 eil101 642 701 9.2%
7 gro6 512 534 4.3%
8 gri37 729 743 1.9%
9 1in105 14,383 15,207 5.7% Yes
10 pr76 108,159 112,152 3.7% Yes
11 pr107 44,301 49,653 12.1% Yes
12 pri24 59,030 68,069 15.3% Yes
13 pri36 96,770 108,573 12.2% Yes
14 prl44 58,535 67,867 15.9% Yes
15 rat99 1,219 1,265 3.7%
16 rat195 2,333 2,517 7.9%
17 rd100 7,910 8,426 6.5%
18 ul59 42,075 47,354 12.6% Yes

VI. CONCLUSIONS AND NEXT STEPS

We have introduced a simple algorithm that takes a full
triangulation (iGCT) of a planar point set and reduces it to a
simple polygon by removing triangles with low Triangle
Inequality Measure starting from triangles on the convex hull
of this point set. We have proved that the time complexity of
the “apple carving” algorithm is O(n?). We have also shown
that the space complexity of the algorithm to be O(n). We have
then demonstrated that, on average, polygons produced by this
“apple carving” algorithm in our test problems are 8.1% longer
than optimal TSP solutions. If we exclude point sets of three or
more co-linear points, the absolute error drops to the average of
6.1%, with the maximum error recorded at 11.2%.

Based on these results and our literature review we
conclude that “apple carving” algorithm produces better quality
of solutions than any other construction heuristics other than
match-twice-and-stitch heuristic, as evident in Fig. 5. Here it is
important to note that the “apple carving” average results have
been adjusted up by 0.8%, since HK lower bound is on average
0.8% lower than the optimal TSP solution [15].

Our initial research hypothesis that the “apple carving”
algorithm will produce results superior to that of the classical
Convex Hull Algorithm were met (9% average error for “apple
carving” versus 12% average error for Convex Hull algorithm).
We were also able to demonstrate that the “apple carving”
algorithm performs significantly better than all the classical
tour construction heuristics and is only slightly outperformed
by Match-twice-and-stich heuristic introduced in 2004 [14].

Vol. 11, No. 3, 2020

25%

—m 20%
o = 200
B 20%
j=mi)
Big 15% % .
- 0,
22 00 1% 9% o
= 8
=) H I 7% 6% g0
5% I |—| |_| 3% 50,
2% qoq
0%
0% 0o =
s s ; X X N S
& S S ST TS
F o > R
= W E I oy &
& S T¢I S o
& & & RN W +
<~ S B s ro{\b >
.;.,Q‘ A\\\\o ‘\“e:
A7 & \Q,\T‘k
S R
< Y‘QQ &

Fig5. Typical Performance of Cited Heuristics over HK Lower bound
(Including “Apple Carving” Algorithm Results).

Limitations in our work lie in the number of TSPLIB
instances we used (i.e. 18 problems), as well as in the relatively
small problem sizes employed (i.e. maximum of 195 points).
To improve quality of our experiments we intend to expand our
tests to all named TSPLIB instances, which will also allow us
to compare how our algorithm performs on problems of
varying size.

Finally, our future work will focus on fine-tuning the
“apple carving” algorithm and adding the improvement steps
of switching the relevant triangles in and out of the solution
polygon depending on whether adding or removing related
triangle pairs will result in desired tour improvements. Triangle
pairs would be relevant and suitable for “swapping” in and out
of the resulting polygon if the share at least one point, and their
“swap” would not result in a loss of solution feasibility.

REFERENCES

[1] G. Reinelt, “Fast heuristics for large geometric traveling salesman
problems” ORSA Journal on Computing, pp. 206-217, 1992.

[2] W. Stewart, Euclidean traveling salesman problems and Voronoi
diagrams. School of Business Administration, College of William and
Mary, 1997.

[3] A. N. Letchford, and N. A. Pearson, “Good triangulations yield good
tours”, Computers and Operations Research, vol. 35(2), 2008, pp. 638-
647.

[4] M. Dodig, and M. Smith, “Novel heuristic for approximating minimum
weight triangulation of planar point sets”, unpublished.

[5] W. Cook, In Pursuit of the Traveling Salesman. Princeton University
Press, 2012.

[6] R. Bellman, “Dynamic programming treatment of the travelling
salesman problem”, Journal of the ACM, vol. 9(1), pp. 61-63, 1962.

[7]1 R. Garey, D. Johnson, and R. Tarjan, “The Planar Hamiltonian Circuit
Problem is NP-Complete”, SIAM Journal on Computing, pp. 704-714,
1976.

[8] M. Held, and R. Karp, “A Dynamic Programming Approach to
Sequencing Problems”, Journal for the Society for Industrial and
Applied Mathematics, vol. 10(1), pp. 196-210, 1962.

[9] G. Kizilates, and F. Nuriyeva, “On the nearest neighbor algorithms for
the traveling salesman problem”, Advances in computational science,
engineering, and information technology, vol. 225, pp. 111-118, 2013.

[10] C. Nilsson, Heuristics for the Traveling Salesman Problem. Linkdping
University, 2003.

6|Page

www.ijacsa.thesai.org

[11]

[12]

[13]

[14]

(IJACSA) International Journal of Advanced Computer Science and Applications,

D. Rosenkrantz, R. Stearns, and P. Lewis, “Approximate algorithms for
the traveling salesperson problem”, 15" Annual Symposium on
Switching and Automata Theory, pp. 33-42, 1974.

B. Golden, L. Bodin, T. Doyle, and W. Stewart Jr, “Approximate
traveling salesman algorithms”, Operations Research, vol. 28(3), pp.
694-711, 1980.

N. Christofides, “Worst-case analysis of a new heuristic for the
travelling salesman problem (No. RR-388)”, Carnegie-Mellon
University, Management Sciences Research Group, 1976.

A. Kahng, and S. Reda, “Match twice and stitch: a new TSP tour
construction heuristic”, Operations Research Letters, pp. 499-509, 2004.

Vol. 11, No. 3, 2020

[15] D. Johnson, L. McGeoch, and E. Rothberg, “Asymptotic Experimental

Analysis for the Held-Karp Traveling Salesman Bound”, Proceedings of
the Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 341-
350, 1996.

[16] R. Osserman, “The Isoperimetric Inequality”, Bulletin of the American

Mathematical Society, vol. 84(6), pp. 1182-1238, 1978.

[17] T. Vassilev, Optimal Area Triangulations. University of Saskatchewan,

2005.

[18] G. Reinelt, “TSPLIB - a traveling salesman problem library”,

INFORMS Journal on Computing, pp. 376-384, 1991.

7|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 3, 2020

Real-Time Cryptocurrency Price Prediction by
Exploiting IoT Concept and Beyond: Cloud
Computing, Data Parallelism and Deep Learning

Ajith Premarathne?, Malka N. Halgamuge?*, R. Samarakody®, Ampalavanapillai Nirmalathas*

Velrada Capital Pty Ltd, Melbourne VIC 3000*
Department of Electrical and Electronic Engineering, The University of Melbourne, VIC 3010, Australia® 34

Abstract—Cryptocurrency has as of late pulled in extensive
consideration in the fields of economics, cryptography, and
computer science due to it is an encrypted digital currency, peer-
to- peer virtual forex produced using codes, and it is much the
same as another medium of the trade like real cash. This study
mainly focuses to combine the Deep Learning with Data
parallelism and Cloud Computing Machine learning engine as
“hybrid architecture” to predict new Cryptocurrency prices by
using historical Cryptocurrency data. The study has exploited
266,776 of Cryptocurrency prices values from the pilot
experiment, and Deep Learning algorithm used for the price
prediction. The four hybrid architecture models, namely,
(i) standalone PC, (ii) Cloud computing without data parallelism
(GPU-1), (iii) Cloud computing with data parallelism (GPU-4),
and (iv) Cloud computing with data parallelism (GPU-8)
introduced and utilized for the analysis. The performance of each
model is evaluated using different performance evaluation
parameters. Then, the efficiency of each model was compared
using different batch sizes. An experimental result reveals that
Cloud computing technology exposes new era by performing
parallel computing in 10T to reduce computation time up to 90%
of the Deep Learning algorithm-based Cryptocurrencies price
prediction model and many other loT applications such as
character recognition, biomedical field, industrial automation,
and natural disaster prediction.

Keywords—Internet of things; loT; data parallelism; deep
learning; cloud computing

I. INTRODUCTION

Cryptocurrency is a technology dominant innovative form
of digital currency that secures the financial transactions using
cryptography, whereas concealing the identities of its users
and minimize the counterfeit of the transactions.
Cryptocurrency uses decentralized digital currency control
that applies the distributed ledger technology, typically a
Blockchain. The blockchain can be a distributed public
financial transaction database, a public ledger or digital events
that executed and shared between the participating parties.
Participants in the Cryptocurrencies market build trust
relationships through the formation of Blockchain supported
cryptography techniques using hash functions. In 2008, an
unknown group or an individual published a paper by
introducing themselves under the name of Satoshi Nakamoto
and paper entitled Bitcoin: A Peer-To-Peer Electronic Cash
System”. This paper explains peer-to-peer online electronic
cash payment system that would allow sending payments

*Corresponding Author

directly from one party to another without involving a
financial institution. Bitcoin is the first realized
Cryptocurrency concept created in 2009 and thought it
extremely popular in 2017 [1]. The price of the Bitcoin has
occasionally increased and therefore the value of the bitcoin is
considered volatile. Hence, numerous economical entities try
to predict the bitcoin price using different tools. This
significant price movements of the bitcoin imply the
requirement of accurate cryptocurrencies price prediction
model to uphold the consistent economic policy. Thus, the
demand for the cryptocurrencies price prediction mechanism
is high. The cryptocurrencies price prediction model is
prevalent around the world because most of the traders in the
world use Cryptocurrencies to earn profits in an online market.

The blockchain databases have ready availability a large
volume of data however the challenge is analyzing and storing
this large volume of data on a time scale. Then, the cloud
computing, which is the latest technological evolution of
computational science, allowing groups to host, store process,
and analyze large volumes of multidisciplinary data. Cloud
computing is an internet-based utility service that provides
virtualized service, storage, and databases, etc. The cloud
technology is a distributed technology platform that leverage
to provide highly scalable and resilient environments.
Correspondingly, cloud computing architecture supports for
the scalability, virtualization, and storage of large volume of
structured and unstructured data based on the unlimited
resources on demand [2]. Therefore, cloud computing is
considered an appropriate platform for deep learning analytics.
Google is one of the examples for the major Cloud computing
providers. Thus, this study has used the Google Machine
Learning (ML) Engine, as a Deep learning computing engine
because, the Google ML Engine is easy to instruct for scaled
data in deep learning algorithm [3]. Deep Learning referred to
as achieved significant scalability and stability and
generalization of training on big data. It can develop a model
that converts inputs to outputs by extracting complex and non-
linear hierarchical features of training data [4]. The programs
of data-parallel entails with a series of operations and
functioning to identify the large structured data. However, the
parallelism can be either implicit or explicit, and can be
regular or irregular [5].

This study aims to combine the Deep Learning with cloud
computing and data parallelism based on the 10T concept for
the development of cryptocurrencies price prediction model.

8|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

Il. RELATED WORK

Enormous studies conducted to develop models for the
cryptocurrency prices prediction however, there is a
considerable gap in the research on predicting cryptocurrency
involve with the machine learning algorithms. Many
cryptocurrencies price prediction studies [6, 7, 8, 9] performed
using standalone computers. However, Geourgoula et al. [10]
discussed the Bitcoin price determinants and implemented a
sentiment analysis technique that supports vector machines.
The author explained that the network hash-rate and the
frequency of the Wikipedia views had a significant positive
correlation with the fluctuation of the Bitcoin price.

Greaves et al. [11] predicted the Bitcoin price by analyzing
the Blockchain using SVM and ANN. The author reported that
a regular ANN has 55 percent of price prediction accuracy.
The study concluded that exchanges on the outside of the
realm of the Blockchain have technically dictated price and it
limited the Blockchain data predictability. Similarly, Matta et
al. [12] studied the effect of tweets on Twitter and Trend
views of Google for the price of Bitcoin with 60 days as
sample size and sentiment as a variable. The author found that
both Google Trend views and positive tweets have moderately
correlated to the Bitcoin price fluctuation and that correlation
can be used to predict the cryptocurrencies price. However,
the inadequate sample size is a major drawback of the study
and prediction based on the social media comments may not
be a reliable source for the scientific studies. Steinkrau et al.
[13] implemented a GPU-based ANN model and reported that
the model is three times faster training and testing than a CPU.
Ciresan et al. [14] also reported that GPU-based deep natural
network training is forty times faster than a CPU for the image
recognition. David Sheehan has proposed a Cryptocurrencies
price prediction algorithm [6] based on Long Short-Term
Memory (LSTM) neural network model. Correspondingly,
Alex (2014) [15] suggested a method for paralleling the
training of convolutional neural networks across multiple
GPU:s.

However, any of these studies did not exploit the 10T basic
concepts and cloud computing phenomena in 10T along with
Deep Learning for the Cryptocurrencies real-time price
prediction. Therefore, this paper explains to quantify the
impact of computation time of Deep Learning algorithm
training on four models ((i) Standalone PC - (ii) GPU1l —
without data parallelism model (iii) GPU4 - with data
parallelism model and (iv) GPU8 — with data parallelism
model) with a high accuracy percentage of Cryptocurrency
price prediction. This study mainly focused on Parallel
Processing and Cloud computing along with the internet of
things (l1oT) concept to develop a cryptocurrencies price
prediction model.

Main contribution of the paper

e Real-time Cryptocurrency price was predicted by
exploiting the Internet of things (loT) concept and
beyond.

e Data parallelism and Cloud Computing Machine
learning engine were combined with Deep Learning
and this hybrid architecture is applied to

Vol. 11, No. 3, 2020

Cryptocurrency historical data
Cryptocurrency price.

e Three hybrid architecture was developed for
cryptocurrency data training and predicting purpose
(i) standalone PC, (ii) Cloud computing without data
parallelism (GUP-1), (iii) Cloud computing with data
parallelism (GUP-4).

e Cloud computing technology secure new trends in
performing parallel computing in loT to reduce
computation time up to 90% of the Cryptocurrency
price prediction model using Deep Learning algorithm.

to predict new

e Proposed hybrid architecture can be used in any
application including in loT applications such as
character recognition, biomedical field, industry
automation and natural disaster prediction.

The rest of the paper is organized as follows: Section Il
describes related work and the main contribution of the paper.
Section Il introduces how the data is collected and pre-
processed and techniques to combine Deep Learning with
cloud computing and data parallelism based on the loT
concept. Section IV provides results, and Section V provides
related discussion. Finally, the paper concludes in Section V1.

I1l. MATERIALS AND METHODOLOGY

A. Data Collection and Preparation

Historical Cryptocurrencies data from the Quandal
database collected and recorded daily for four years at
different time instances. Then, the data normalized by
implementing Min-Max Scalar technique and smoothened
over the complete period and normalized data were retrieved
up to a current date subsequently. Data preparation performed
before the training process by using deep learning algorithm.

Before training the network, the data set scaled to
converge the system efficiently. Then, the scaled data set
divided into two sets as “training data set” and “testing data
set”. The deep learning algorithm trained using the training
data set and accuracy of the Cryptocurrencies price prediction
for an unseen data tested using the testing data set.

The testing data set that manipulated to predict the
Cryptocurrencies price trained by creating Neural Network
Model which has Five-layers including input, output, and
three hidden layers. The ReL.U activation function applied for
the hidden layers as it can increase the training efficiency. The
Liner activation utilized for an output layer as it can pass
values without any modification. Then, update the quality and
speed of the model parameters using SGD optimizer.

B. Training Methods

Mean Squared Error (MSE), Mean Absolute Error (MAE),
variance and computation time (CPU processing time)
computed for each model to identify the best-fitted model to
prediction of Cryptocurrencies price.

c. Performance Evaluation of the Four Models by
Comparing the Batch Size

The MAE values, MSE value, Explained variance Score,
Accuracy of the prediction (R2), Min-Max Scalar, Efficiency

9|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

Comparison Percentage and Efficiency of Computation Time
of each hybrid architecture model compared using five
different size of datasets (batch size) such as (i) Batch 32 (ii)
Batch 256*4 (iii) Batch 256*8 (iv) Batch 256*16 and (v)
Batch 256*32. The experiment performed for 50, 100, 200,
500, 1000 and 5000 epochs.

D. Cryptocurrency Price Prediction Mechanism

Fig. 3 describes the Cloud computing connected
Cryptocurrencies predicting mechanism process.

Following steps (Fig. 1) explained the detail procedure for
the Cloud computing connected Cryptocurrencies predicting
mechanism.

Step 1: Retrieve historical Cryptocurrency data from the
internet and save as CSV file.

Step 2: Load historical Cryptocurrency data to the desktop
computer.

Step 3: Scale historical Cryptocurrency data to between 0-
1 and then save back as CSV file in the desktop computer.

Step 4-1: Train the Cryptocurrency prediction model using
deep learning algorithm without the Cloud computing model.

Step 4-2: Train the Cryptocurrency prediction model using
deep learning algorithm in with Cloud computing model or
with parallel Cloud computing.

Step 5-1: Save the trained Cryptocurrency prediction
model in Cloud computing.

Step 5-2: Save the trained Cryptocurrency prediction
model in Cloud computing.

Step 5: Retrieve real-time Cryptocurrency data from the
internet as CSV file data.

Step 6: Feed lives Cryptocurrency data to train the
Cryptocurrency prediction model that saved in Cloud
computing.

Step 7: Get the result back from Cloud computing and
show the predicted Cryptocurrency price.

Rawdata _
file(CSV) Trained
model | Cloud
(x0¢.h5)
»o Desktop ;&l
computer
(Past data) (:)
Training
eve ﬁ
©)
Scaled @
datafile

(Csv) 2 7
Cloud (GPU-1) and

Cloud with parallel
g

(Google ML Engine)

Livedata
onInternet

(Current
data)

Result

Flow
Chart

Live Prediction
(Desktop computer)

Flow ||
Chart

Fig. 1. Cloud Computing Connected Cryptocurrencies Predicting
Mechanism using the Deep Learning Algorithm.

Vol. 11, No. 3, 2020

E. Deep Learning Training Model in with or without Cloud
Computing
Flow Chart 1 emphasizes in Fig. 5 describes the training
phase of the Cryptocurrencies price prediction using deep
learning algorithm.

F. Client-Side Cryptocurrency Price Predicting Model

The Flow Chart 2 shown in Fig. 3 and Fig. 4 describes the
prediction algorithm which used for the training method.
Then, the training method saved on the Cloud. Finally, this
training method used to predict the Cryptocurrencies price for
unseen newly arrived data.

G. Data Parallelism Cloud Computing Working Methodology

The data parallel method explained by [16] has practiced
for parallel training as showed in Fig. 2 and steps are as
followed.

Step 1: Dataset was divided into eight datasets

Step 2: Feed those data sets into four graphics processing
units (GPUs)

Step 3: Each GPU computes different data set of the
batches.

Step 4: Data parallelism used synchronization between
model parameters and model parallelism doing synchronizing
between input and output values between the data chunks.

Make prediction fortest data

Make total eror=) |
| Rescaled dataset |

=) |l

Apply first pattem and train(Eq(1),
Eq(2) Eql3)

Createrandom seed and shuffle

Define constant

Read CSV file
Scale and save datainto CSV file

Calculate Number of data rows

Get error for each output newron in
network and add to total emor

Calculate statistic data (MSE(Eq(4)),

MAE(Eq(5)), R? score asaccuracy

Eq(6), explained_variance Eq(7)))

If last patterm has
trained using
deepleaming

algorithm

Read Scaled training data set (80%)
from CSV file

Data Cleaning

Develop could model

Total emror<Final
target emor

Save model |

Ll

Read Scaled testing data set (20%)
from CV file

| Train the network |- | Simulatenetwork l— End

Fig. 2. Server Side: The Cryptocurrencies Price Prediction Training Flow
Chart using Deep Learning Algorithm (Flow Chart 1).

10|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

H. Algorithms

Two algorithms developed for the prediction of
Cryptocurrencies price. The algorithm 1 used to compute the
MSE, MAE, R2 and explained variance of the historical data
and to develop a Cloud computing training model. Then, the
training model is developed by the Algorithm 1 (that has
saved on the Cloud computing) is used for the Algorithm 2 to
predict the Cryptocurrencies price of the live data.

Algorithm 1: Cryptocurrencies price prediction training
using Deep Learning algorithm

Begin
Import library
Create random seed and shuffle
Define constant
Read CSV file
Scale and save data into CSV file
Calculate Number of data rows
Read Scaled training data set (80%) from CSV file
Data Cleaning
Read Scaled testing data set (20%) from CSV file
Train the network
While total errors ==0:
Apply the first pattern and train the network
Get error for each output node in the network and add
to the total error
If the last pattern has trained, then:
If total error < final target error, then:

End training
End If
End If
End While

Simulate network

Make a prediction for test data

Rescaled dataset

Calculate statistic data (MSE), MAE, R2? score as
Cryptocurrency price prediction accuracy, explained variance)
Develop Cloud computing model

Save Cloud computing model

End

Vol. 11, No. 3, 2020

Algorithm 2: Cryptocurrencies price predicting using a
Deep Learning algorithm

Begin
Import library
Define constant
Initialize the variable
Initialize the plot
Initialize the Google Credentials Variable
While True:
Read live data from the server
Scaled data
For j in range (0, length of the data file):
Assign Cloud computing input data
Read credential file
Gets prediction from Cloud computing
Save on data frame
End for
Plot the live prediction graph
Wait for new data
End while

End
3

| Read live data from Intemet |

Assign cloud input data

Read credential file

Define constant
" s

Initialize the variable
Initialize the plot

Initialize the Google Credentials
varizble

If
Length of data
file>=]

Save on data frame

Plot the live prediction graph

Ermor

Fig. 4. The Cryptocurrency Data Parallelism Training Block Diagram using Deep Learning Algorithm in Cloud Computing Learning Algorithm (Flow Chart 2).

11|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

it [

Apply support vector .
™ regression (svA) 3| Apply Kemeans clustsring Apoly Histogram function

Optimize radial basis
Kemal

/
Ny o/ \
7 Obtained satistying // Obained satistying
=
~
"/
Ve

Process information

statistically and
graphically

/ —
/QI P—

Fig. 5. Overall Methodology (Flow Chart 3).

I. Comparison of the Efficiency Results

The efficiency of the model compared using Efficiency
Comparison Percentage (ECP) equation and Table I describes
the parameters and equation for each step.

Finally, overall methodology has drafted as showed in
Fig. 7.

TABLE. I. HYBRID TECHNIQUE: CRYPTOCURRENCY HISTORICAL DATA
TRAINING METHODS
Memory
Method CPU (GB)
Standalone PC Intel core i3 —7100U - 2.4 Hz 8
GPU
Cloud computing GPU memory
Method GPU name model | "V | GB)
(GDDRS5)
Cloud computing ?S?ct)I(:n;]Z;EcSGD
without data A .| NVIDI
- gradient descent):
parallelism In each trainin: A 1 12
(GPUL —without | g 8¢E @IS | Tesla
data parallelism h P K80
model) the parameter
Standard_GPU
Cloud computing
with data NVIDI
parallelism Complex_model_I | A
(GPU4) GPU Tesla |4 48
(GPU4 — with - K80
data parallelism
model)
Cloud computing
with data
parallelism NVIDI
Complex_model_I | A
(GPUSB) GPU Tesla 8 120
(GPU8 — with - K80
data parallelism
model)

Vol. 11, No. 3, 2020

IV. RESULT

A. Performance Evaluation of the Four Models by
Comparing the Batch Size

1) Comparing the performance evaluation of the
standalone PC method: According to Fig. 6 the batch 32
recorded 88.706 of the highest prediction accuracy value in
epoch 5000 and it consumes 765.690 minutes while the batch
256*32 recorded 35.886 as the lowest accuracy rate in epoch
50 during 41.552minutes. According to the results of these
comparisons, the highest prediction accuracy value observed
from Batch 256*4 as 85.646 while it consumed 81.030
minutes in epoch 5000. However, Batch 256*16 has
significant prediction accuracy of 81.266 and efficiency is
59.78 minutes.

2) Comparing the performance evaluation of the GPU1 —
without data parallelism: Fig. 7 indicates that the maximum
and minimum prediction accuracy values of the GPU1l —
without data parallelism models observed in epoch 5000 and
50 respectively for all batch sizes. However, batch 32
recorded, 88.703 as maximum prediction accuracy value and
consume 1785.97 minutes. The batch 256*32 had 35.874 as
minimum prediction accuracy value and it used 7.624 minutes.
Conferring to the results in Fig. 7, epoch 5000 reported 85.647
of prediction accuracy as the highest value in Batch 256*4
while it consumes 152.983 minutes to fulfill the target
efficiency. However, for the GPUL — without data parallelism
model the Batch 256*16 reached 81.267 accuracy percentage.

3) Comparing the performance evaluation of the GPU4 —
with data parallelism: Fig. 8 emphasizes the accuracy value
comparison of the five batches. According to the result, the
Batch 32 has 87.779 of the highest prediction accuracies in
epoch 5000 while the Batch 256*32 has 35.874 of prediction
accuracy which is reported as the lowest.

4) Comparing the performance evaluation of the GPU8 —
with data parallelism: The highest prediction accuracy of
87.071 reported by the batch 32 in epoch 5000 and consumed
686.541 minutes (Fig. 9). However, the batch 256*32 has the
best efficiency which is 28.23 minutes and prediction
accuracy of 79.088 for the GPU8 — with data parallelism
model.

Prediction Accuracy(Only Positive) - comparison

i -& Batch 32
20 i —+— Batch 2564
Batch 2568
- Batch 256°16
of | —-= Batch 256*32

Prediction Accuracy(%)

0 1000 2000 3000 4000 5000
Epochs

Fig. 6. Comparing the Prediction Accuracy Values of the Standalone PC
Method Related to different batch Size.

12|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

Prediction Accuracy(Only Positive) - comparison

@
=3

@
=]

&

i -# Batch 32
—+— Batch 2564
i Batch 256*8
i - Batch 256716
od 1 — = Batch 256*32

Prediction Accuracy(%)
3

o 1000 2000 3000 4000 5000
Epochs

Fig. 7. Comparison of the Prediction Accuracy of the GPU1 — without Data
Parallelism whereas; Parallelism — Efficiency (without Batch 32) Values
Related to different Batch Size.

Prediction Accuracy(Only Positive) - comparison

i -# Batch 32*8

Prediction Accuracy(%)

20 i —4— Batch 256*4
| Batch 256*8
| -®- Batch 256*16
0 I —-— Batch 256*32
0 1000 2000 3000 IGbO 5000

Epochs

Fig. 8. Comparison of the — Prediction Accuracy Values of the GPU4 — with
Data Parallelism Related to different Batch Size.

Prediction Accuracy(Only PosItive) - comparison

404 il

i - Batch 32°8
Batch 256*4
Batch 2568
| @+ Batch 256*16
04 I —-= Batch 256*32

Prediction Accuracy(%)

t

0 1000 2000 3000 4000 5000
Epochs

Fig. 9. Comparison of the Prediction Accuracy Values of the GPU8 — with
Data Parallelism Related to different Batch Size.

B. Comparison of the Efficiency Percentage Results

Efficiency percentage of each model was compared using
the methodology described in the Table II.

Method A; Cloud computing without data parallelism
(GPU1) model vs. Cloud computing with data parallelism
model (GPU4).

Method B; Cloud computing without data parallelism
(GPU1) model vs. Standalone PC model.

Method C; Cloud computing without data parallelism
(GPU1) model vs. Cloud computing with data parallelism
model (GPUS).

Method D; Standalone PC model vs. Cloud computing
with data parallelism model (GPU4).

Method E; Standalone PC model vs. Cloud computing
with data parallelism model (GPUS).

Vol. 11, No. 3, 2020

Method F; Cloud computing with data parallelism (GPU4)
model vs. Cloud computing with data parallelism model
(GPUB).

1) Efficiency comparison of the algorithms for batch
256*8: Fig. 10 reveals that the EPC results from Method A to
Method F for the Batch 256*8. The GPU1 has no data
parallelism, therefore, it spent a lot of time on the training
compared to the GPU4. However, the ratio of Method A is
significantly higher than Method B, Method C, Method D, and
Method F. In Method B, the GPU1 model runs in cloud
platform and the Standalone PC without cloud just like a
laptop computer. The GPU1 module consumed more time for
the training compared with Standalone PC model because the
GPU1 module requires considerable time to flush the memory.
The Standalone PC model has higher efficiency percentage
from 50 to 200 epochs while runs faster within that epochs
range than the GPU4 model. Subsequently, the efficiency
percentage of the Standalone PC model slightly slower than
GPU4 model. Hence, until 200 epochs Method B ratio is
higher than Method A. The GPU1 model in Method C took
more time for the training the GPU8 model because it does not
include the data parallelism. However, GPU8 model is slightly
slower than the GPU4 and Standalone PC models; thus, the
ratio of the Method C comparatively lower than Method A,
Method B, and Method F.

TABLE. Il. COMPARISON EQUATIONS FOR EFFICIENCY COMPARISON
PERCENTAGE (ECP)
Comparison o The equgtion for Efficiency
Method Description Comparison Percentage
(ECP) calculation
Cloud computing without | Percentage = [(Cloud
data parallelism (GPU1) computing without data
M model vs. Cloud parallelism (GPU1)- Cloud
ethod A - -] - .
computing with data computing with data parallelism
parallelism model (GPU4)) /Cloud computing
(GPU4) (GPU1)] * 100 %
Cloud computing without | Percentage = [(Cloud
Method B data parallelism (GPU1) computing (GPU1) - standalone
model vs. Standalone PC | PC)/ Cloud computing (GPU
model 1)] * 100 %
Cloud computing without | Percentage = [(Cloud
data parallelism (GPU1) computing without data
Method C model vs. Cloud parallelism (GPU1)- Cloud
computing with data computing with data parallelism
parallelism model (GPUB8)) /Cloud computing
(GPUSB) (GPU1)] * 100 %
Standalone PC model vs. Percentage = [(Standalone PC -
Method D Cloud computing with Cloud computing with data
data parallelism model parallelism (GPUA4)) /
(GPU4) Standalone PC] * 100 %
Standalone PC model vs. Percentage = [(Standalone PC -
Method E Cloud computing with Cloud computing with data
data parallelism model parallelism (GPU8)) /
(GPUB) Standalone PC] * 100 %
Cloud computing with Percentage = [(Cloud
data parallelism (GPU4) computing with data parallelism
Method E model vs. Cloud (GPU8)- Cloud computing with
computing with data data parallelism (GPU4))
parallelism model /Cloud computing (GPU8)] *
(GPUSB) 100 %

www.ijacsa.thesai.org

13|Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Efficiency Percentage comparison results of Method D
indicated that the Standalone PC model required more time for
the training compared to GPU4 model. In Method D, the
efficiency of both GPU4 and Standalone PC models faster
than the GPU1 and GPU8 models. Therefore, Method D ratio
is the lowest due to comparing the two fastest algorithms.
According to the equation of Method E, Standalone PC model
is faster than GPU8 model; hence, the Method E ratio is
negative and Method E line is not plot in Fig. 10. The GPU8
model in Method consumed considerable time for the training
compared to the GPU4 model. The inter-process
communication of the GPU8 model may be the reason for this
substantial time consumption and as a result Method F ratio is
well above Method C and Method D.

2) Efficiency comparison of the algorithms in batch
256*16: The GPU1l model in Method A has no data
parallelism therefore it spent lot time for the training than the
GPU4 model and the efficiency percentage of the GPU1
model in Batch 256*16 is significantly slower than the Batch
256*8 (Fig. 11). However, the ratio of Method A is higher
than the other methods. As in Batch 256*8 for Method B, the
GPU1 model spent more time on the training than the
Standalone PC model because the GPU1 model consumed
considerable time to flush the memory. Results of the Method
B in Batch 256*16 has evidently shown that the Standard PC
model is slower than the GPU4 and GPU8 model and
therefore, the ration of the Method B tracked below the
Method A and Method C. In Method C, the GPU8 model is
slightly speed than the Standalone PC model, however, the
efficiency percentage of the GPU1 model in Method C for the
Batch 256*16 showed comparatively higher efficiency
percentage than the Batch 256*8. Thus, the Method C ratio is
slightly below than the Method.

Method D result illustrated that the Standalone PC model
is 50% slower than the GPU4 model. Therefore, Method D
ratio is lower than Method A, Method C, and Method B while
higher than the Method E and Method F. The efficiency ratio
of the Standalone PC model in Method E is slightly slower
than the GPU8 model hence, Method E ratio is above Method
F. The GPU8 model in Method F consumed substantial time
for the training than the GPU4 model. It caused to slower the
GPU8 model and inter-process communication may be the
reason for this significant time consumption. As a result, the
Method F ratio is lowest for the Batch 256*16.

3) Efficiency percentage comparison of the algorithms in
batch 256*32: In Method A, GPUL spent significant time on
the training compared to the GPU4 model (Fig. 12). However,
the ratio of Method A is significantly higher than other
methods. The GPU1 model in Method B runs in cloud
platform and it consumed more time for the training compared
with the Standalone PC model because the GPU1 model take
some time to flush the memory. The efficiency ratio of the
GPU8 model in Method C is slightly speeding than the
Standalone PC model, therefore, the ratio of the Method C is
lower than the Method A and higher than the Method B,
Method D, Method E, and Method F.

Vol. 11, No. 3, 2020

Efficiency - comparison (Batch 256+*16)

60 - /»/t/‘*
so Ao e
Ra0{ u/ S T =
= s aeemmTT
g me e
] - e
.g 30 j»/' R T ——— = —
e - "~ ‘Method A
w20 o -= Method B
-~ Method C °
10 4 . Method D
B @ Method E
0] e —— Method F
0 1000 2000 3000 4000 5000
Epochs

Fig. 10. Efficiency Comparison Percentage for the Batch 256*8.

Efficiency - comparison (Batch 256*16)

60 4 /r/ﬁ
504 4 e ememn
Raof /77 T -
= h\ __________
g S
8307 J,,/! T — .
o SN CUismemnniTl
] o —— Method A ...
Wi 204 o -= Method B
--- Method C °
101 o Method D
B @ Method E
ol o —— Method F
0 1000 2000 3000 4000 5000
Epochs
Fig. 11. Efficiency Percentage Comparison for the Batch 256*16.
Efficiency - comparison (Batch 256%32)
100
e e
-
90 o ~————- B e e e e e e -
80 -
R 70 .
© 60 4 e
£ s
Y so0- H
; : —&— Method A
o 404 '] -®# Method B
é --- Method C
30 A Method D
@+ Method E
20{ W+ MethodF
0 1000 2000 3000 4000 5000
Epochs

Fig. 12. Efficiency Percentage Comparison for the Batch 256*32.

Both GPU4 and Standalone PC models in Method D are
faster than the GPUL1 and GPU8 models. When considering
Method D in Batch 256*32 and Batch 256*8, the efficiency
percentage of the GPU4 model in Batch 256*32 is higher than
the Batch 256*8. When consider Method E for Batch 256*32
the Standalone PC maodel is noticeably faster than the GPU8
model hence, Method E ratio is the lowest ratio for the Batch
256*32. The GPU8 model in Method F required more time for
the training compared to the GPU4 model while results of the
Method F in Batch 256*32 is faster than Batch 256*8.
However, the ratio of Method F is higher than Method E for
the Batch 256*32.

V. DISCUSSION

This study aims to predict real-time Cryptocurrency Price
by using Deep Learning algorithm whereas exploiting loT
concepts and beyond using Cloud computing and Data
Parallelism. Time consumption is the major barrier for the

14|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

training a large data set sequenced in the neural network.
Therefore, this application primarily concerned to develop an
algorithm to forecast the Cryptocurrencies price prediction
accuracy. Numerous research experts discussed cloud
computing [15, 17], Deep learning algorithms [18],
cryptocurrency price prediction, Bitcoin [6, 7, 9] and data
parallelism [19, 20] separately as three different topics. Thus,
it has a potential and significant correlation between these
three approaches and can be experimented together to explain
precise model for the Cryptocurrencies price prediction.
However, this potential was ignorance and created a
substantial gap in the field. Therefore, the experimental
methodology of this study combined these three studies into a
single platform to exploit the 10T basic concept for real-time
Cryptocurrencies price prediction based on historical data. The
main challenge of the real-time Cryptocurrencies price
predicts models is that the application accuracy in real-world
due to the fluctuating nature of the Cryptocurrencies.
Similarly, identifying daily trends in the Bitcoin market while
gaining insight into optimal features surrounding Bitcoin price
is important because they try to predict the sign of the regular
price change with the highest possible accuracy [9]. The
Bayesian Neural Networks are a precise approach to estimate
the maximum likelihood of Cryptocurrencies price and
explaining the high volatility of the recent Bitcoin price [7].
Alternatively, reduce the training time of the Deep Learning
algorithm is a noteworthy challenge for the cryptocurrency
price prediction approaches. However, without
Cryptocurrencies price prediction accuracy, computation time
useless.

This study identified three major gaps in the
cryptocurrencies price prediction models through the literature
review as (1) accuracy of the application (2) long computation
time and (3) application of 10T concepts to the prediction
models. Concerning all the gaps in the current
Cryptocurrencies price prediction applications, this study
developed four hybrid architecture models, namely,
(i) Standalone PC, (ii) GPU1l - without data parallelism
model, (iii) GPU4 — with data parallelism model, and
(iv) GPU8 — with data parallelism model for Cryptocurrencies
training methods with a similar deep learning algorithm.

Primarily, the study concerned to enhance the accuracy of
the Cryptocurrencies price prediction model and suggests an
alternative to overcome the factors effect to reduce the
prediction accuracy using Deep learning algorithm. The study
utilized 266,776 historical data for the training of
Cryptocurrencies price prediction Deep learning algorithm.
The experiment has maintained maximum epoch for the Deep
learning algorithm training as 5000 because the study
expected to achieve more than 80% of price prediction
accuracy. This study applied IoT technology combined with
the Cloud computing to predict Cryptocurrencies price and to
train the Cryptocurrencies price prediction, model. Also, the
volume of the data set considerably influence to the accuracy
and computation time of the prediction models and thus used
five different batch sizes for the experiment. The accuracy
percentage of the prediction and volume of the data set has a
positive correlation which means the prediction of the big data
set can be higher compared to the small volume of data set.

Vol. 11, No. 3, 2020

The Google ML engine provides different types of GPU for
Cloud computing with data parallelism models which can be
utilized for Deep Learning training. Therefore, types of GPU
may have potential to reduce the computation time and
accuracy of the training methods. The main advantage of the
parallelism data is that it can be divided into a few batches to
reduce the data set size of one batch, and then GPU can
compute an individual quantity of the data set. However, the
reduction of the volume of the data set that simulated to GPU
affected to the prediction accuracy. Furthermore, the study
identified that accuracy of the Cryptocurrency price prediction
models can be increased using fully connected dense neural
network with ReLU activation function in hidden layers and
linear activation function in the output layer.

Deep Learning algorithm training is a highly time-
consuming process when the data set is large. Subsequently,
this study combined the 10T concept with parallel processing
and Deep Learning to reduce the computation time of the
prediction of the models by training the historical data over
pre-determined time slots. Firstly, the Standalone PC model
was trained, and highest prediction accuracy which 88.7% was
obtained by Batch 32 within 765.69 min. The best accuracy
percentage for this model was 81.27% and this could be
achieved within 59.78 min. by the Batch 256*16. Secondly,
the GPU1 — without data parallelism model was trained. The
Batch 32 reported the highest prediction accuracy as 88.7%
but it consumed 1785.97 min which is not practical. However,
Batch 256*16 has the best efficiency which is 99.84 min and
accuracy percentage was 81.27 for this model. Thirdly, the
GPU4 — with data parallelism model trained and Batch 256*4
represented 87.78% of accuracy within 909.85min. For this
model Batch, 256*32 has the best efficiency which is 22.58
min and accuracy was 79.09%. Finally, the GPU8 — with data
parallelism model trained and 87.07% the highest accuracy
percentage could be observed from Batch 32 within
686.54min. Batch 256*32 has the best efficiency which is
28.23 min for 79.09% of accuracy. All four models achieved
almost 80% Cryptocurrencies price prediction accuracy.

The experimental results confirmed that the GPU4 — with
data parallelism and the GPU8 — with data parallelism models
can reduce the computation time which is approximately
within 30 minutes for the large batch sizes. Few authors
applied the Deep Learning approach with the parallel neural
network [17], data parallelism [15] and Parallel Consensual
Neural Networks [20] to reduce the computation time.
Similarly, [19] has discussed the effect of traffic flow in cloud
computing for the computation time using different types of
parallel architectures. All these studies proved that a
combination of Cloud computing with data parallelism for the
training model significantly reduce the computation time.
However, the data parallelism models can be executed for a
large set of historical data, and Deep Learning training with
the different GPU types available on the Google ML engine.
Furthermore, proposed hybrid architecture models can be
utilized in any loT application. Correspondingly, future
experiments can be focused on device parallelism with cloud
computing (GPU-8) for the Deep Learning training. Besides,
understanding decentralized approaches for big data databases
[21, 22], decision making utilizing predicting techniques [23,

15|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

24], could be an inspiring method to make the Internet of
Things into one of the future Fourth Industrial Revolution
Technologies (4IR/FIR).

VI. CONCLUSION

This study trained four hybrid architecture models to
predict real-time Cryptocurrencies price using deep learning
algorithm by exploiting the 10T concept. The experimental
results confirmed that Cloud computing technology stimulus
to secure new trends by performing parallel computing in 10T.
Similarly, the results of this study confirmed that data
parallelism and Deep Learning algorithm-based
Cryptocurrencies price prediction models can reduce
computation time up to 90% with 80% of accuracy. However,
the comparison between the model which did not train with
data parallelism namely the Standalone PC and the GPU1 —
without data parallelism models revealed the insignificant
outcome. The Batch 256*32 in GPU8 — without data has the
best accuracy which is 79.09%. The GPU4 - without data
parallelism model resulted in similar results and the Batch
256*32 reported 79.09% of accuracy. These values revealed
that the potential of Cloud computing with data parallelism
(GPU-8 and GPU-4) models to use for Cryptocurrencies price
prediction. Therefore, the experimental results concluded that
uses of Cloud computing with data parallelism (GPU-4 and
GPU-8) models can accelerate the Cryptocurrencies price
prediction process than all other hybrid architecture models
tested in this study and this may vary with the size of the
batch. Ultimately, there is an enormous potential to apply the
proposed hybrid architecture models into any other deep
learning models such as character recognition, the biomedical
field, in addition to any application in 10T such as industrial
automation and natural disaster prediction.

AUTHOR’S CONTRIBUTION

A.P. and M.N.H. conceived the study idea and developed
the analysis plan. A.P. analyzed the data and wrote the initial
paper. M.N.H. helped to prepare the figures and tables and
finalizing the manuscript. R.S. completed the final editing of
the manuscript. All authors read the manuscript.

REFERENCES

[1] A. Rosic, (2016). What is Cryptocurrency: Everything You Need to
Know [Ultimate Guide]. Retrieved from Blockgeeks.com:
https://blockgeeks.com/guides/what-is-cryptocurrency.

[2] H. Yan, P. Yu, D. Long (2019). Study on Deep Unsupervised Learning
Optimization Algorithm Based on Cloud Computing. In 2019
International Conference on Intelligent Transportation, Big Data &
Smart City, pp 679-681.

[3] Cloud ML Engine Overview. (2018). Retrieved from Google.com:
https://Cloud computing.google.com/ml-engine/docs/tensorflow/ techni
cal-overview

[4] L. Song, J. Mao, Y. Zhuo, X. Qian, H. Li, Y. Chen (2019). HyPar:
Towards Hybrid Parallelism for Deep Learning Accelerator Array. In
2019 IEEE International Symposium on High Performance Computer
Avrchitecture, pp. 56-68.

[5] [G. Onoufriou, R. Bickerton, S. Pearson, G. Leontidis (2019). Nemesyst:
A Hybrid Parallelism Deep Learning-Based Framework Applied for
Internet of Things Enabled Food Retailing Refrigeration Systems. arXiv
preprint arXiv:1906.01600.

(6]

(7]

(8]
(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

Vol. 11, No. 3, 2020

D. Sheehan, (2017). Predicting Cryptocurrency Prices with Deep
Learning. Retrieved from Github: https://dashee87.github.io/deep%
20learning/python/predicting-cryptocurrency-prices-with-deep-learning/

H. Jang, J. Lee, "An Empirical Study on Modelling and Prediction of
Bitcoin Prices with Bayesian Neural Networks based on Blockchain
Information," IEEE Early Access Articles, vol. 99, pp. 1-1, 2017.

S. McNally, "Predicting the price of Bitcoin using machine learning,"
School Comput., Nat. College Ireland, Dublin, Ph.D. dissertation 2016.

S. Velankar, S. Valecha, S. Maji. (2018). Bitcoin Price Prediction using
Machine Learning. International Conference on Advanced
Communications Technology, 144-147, 11-14 Feb. 2018.

I. Georgoula, D. Pournarakis, C. Bilanakos, D. Sotiropoulos, G. M.
Giaglis (2015). Using time-series and sentiment analysis to detect the
determinants of bitcoin prices, SSRN Electronic Journal.

C. G. AkcoraAsim, K. Dey, A. Dey, Y. R. Gel, M. Kantarcioglu (2018)
Forecasting Bitcoin Price with Graph Chainlets, Advances in
Knowledge Discovery and Data Mining.

Matta, M., Lunesu, I., & Marchesi, M. (2015). Bitcoin Spread Prediction
Using Social and Web Search Media. In UMAP Workshops.

D. Steinkrau, P. Y. Simard, and I. Buck (2005) Using GPUs for machine
learning algorithms in Proceedings of the Eighth International
Conference on Document Analysis and Recognition. IEEE Computer
Society, pp. 1115-1119.

Ciresan, D. C., Meier, U., Gambardella, L. M., & Schmidhuber, J.
(2010). Deep, big, simple neural nets for handwritten digit recognition.
Neural computation, 22(12), 3207-3220.

A. Krizhevsky, (2014). One weird trick for parallelizing convolutional
neural networks. arXiv:1404.5997, 1-7.

M. Whitney, (2016). Deep Learning with Multiple GPUs on Rescale:
Torch. Retrieved from Blog.rescale.com: https://blog.rescale.com/deep-
learning-with-multiple-gpus-on-rescale-torch/

F. Astrém, R. Koker. (2011). A parallel neural network approach to
prediction of Parkinson’s Disease. Expert Systems with Applications,
12470-12474.

A. A. Diro and N. Chilamkurti, "Distributed attack detection scheme
using deep learning approach for Internet of Things", Future Generation
Computer Systems, Volume 82, May 2018, Pages 761-768.

P. Sekwatlakwatla, M. Mphahlele, T. Zuva. (2016). Traffic Flow
Prediction in Cloud Computing. International Conference on Advances
in Computing and Communication Engineering, 123-128, 28-29 Nov.
2016.

J. Ekanayake, X. Qiu, T. Gunarathne, Scott Beason, Geoffrey Fox.
(n.d.). High Performance Parallel Computing with Cloud and Cloud. 1-
39.

S. Kalid, A. Syed, A. Mohammad, and M. N. Halgamuge, "Big-Data
NoSQL Databases: Comparison and Analysis of "Big-Table",
"DynamoDB", and "Cassandra”, IEEE 2nd International Conference on
Big Data Analysis, Beijing, China, pp 89-93, 10-12 March 2017.

V. Vargas, A. Syed, A. Mohammad, and M. N. Halgamuge, "Pentaho
and Jaspersoft: A Comparative Study of Business Intelligence Open
Source Tools Processing Big Data to Evaluate Performances",
International Journal of Advanced Computer Science and Applications
(JACSA), Volume 7, Issue 10, pp 20-29, November 2016.

A. A. R. Madushanki, M. N. Halgamuge, W. A. H. S. Wirasagoda, and
A. Syed, "Adoption of the Internet of Things (loT) in Agriculture and
Smart Farming towards Urban Greening: A Survey", International
Journal of Advanced Computer Science and Applications (IJACSA),
Volume 10, No. 4, pp 11-28, April 2019.

A. Singh, M. N. Halgamuge, R. Lakshmiganthan, "Impact of Different
Data Types on Classifier Performance of Random Forest, Naive Bayes,
and k-Nearest Neighbors Algorithms", International Journal of
Advanced Computer Science and Applications (IJACSA), Volume 8, No
12, pp 1-10, December 2017.

16|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 3, 2020

The New High-Performance Face Tracking System
based on Detection-Tracking and Tracklet-Tracklet
Association in Semi-Online Mode

Ngoc Q. Ly?, Tan T. Nguyen?, Tai C. Vong®
Faculty of Information Technology
VNUHCM-University of Science
Ho Chi Minh City, Viet Nam

Abstract—Despite recent advances in multiple object tracking
and pedestrian tracking, multiple-face tracking remains a
challenging problem. In this work, the authors propose a
framework to solve the problem in semi-online manner (the
framework runs in real-time speed with two-second delay). The
proposed framework consists of two stages: detection-tracking
and tracklet-tracklet association. Detection-tracking stage is for
creating short tracklets. Tracklet-tracklet association is for
merging and assigning identifications to those tracklets. To the
best of the authors’ knowledge, the authors make contributions
in three aspects: 1) the authors adopt a principle often used in
online approaches as a part of the framework and introduce a
tracklet-tracklet association stage to leverage future information;
2) the authors propose a motion affinity metric to compare
trajectories of two tracklets; 3) the authors propose an efficient
way to employ deep features in comparing tracklets of faces. The
authors achieved 78.7% precision plot AUC, 68.1% success plot
AUC on MobiFace dataset (test set). On OTB dataset, the
authors achieved 78.2% and 72.5% precision plot AUC, 51.9%
and 43.9% success plot AUC on normal and difficult face subsets,
respectively. The average speed was maintained at around 44
FPS. In comparison to the state-of-the-art methods, the proposed
framework’s performance maintains high rankings in top 3 on
two datasets while keeping the processing speed higher than the
other methods in top 3.

Keywords—Face tracking; face re-identification; detection-
tracking; tracklet-tracklet association

I. INTRODUCTION

While multiple object tracking has been receiving much
attention from researchers all over the world, multiple-face
tracking has received much less attention due to two main
reasons: face tracking is a sub-problem of object tracking thus
many works focus on the general problem, and there is a lack
of encompassing multiple-face tracking datasets. Therefore,
multiple-face tracking remains a challenging problem. Recent
advances in the field of multiple pedestrian tracking can be
used to solve the problem of multiple-face tracking. There are
two main research directions for the problem: online and
offline.

Offline approaches [1]-[6] treat the problem as a global
optimization one and solve it once having received all the
information of all frames of a video. These approaches
basically revolve in three stages:

Cuong V. Than*

Al Department
Axon Company
Seattle, USA

Stage 1: Apply detection algorithms over all frames of the
video to get detected bounding boxes of individuals, which are
treated as nodes of a graph.

Stage 2. Define a meaningful metric to measure the
relationship between two nodes of the graph by employing
visual, spatial and temporal information.

Stage 3: Optimize an objective function globally to get
clustered the bounding boxes of individuals.

These approaches tend to use commonly known detectors
to generate all detection boxes (stage 1). However, these
methods are different from each other in defining relations
between nodes (stage 2) and objective functions (stage 3).
Berclaz et al. [1] propose to model all potential locations over
time, find trajectories that produce the minimum cost and track
interacting objects simultaneously by using intertwined flow
and imposing linear flow constraints. Milan et al. [2] employ
an energy function that considers physical constraints such as
target dynamics, mutual exclusion, and track persistence. Tang
et al. [4] propose to jointly cluster detections over space and
time by partitioning the graph with attractive and repulsive
terms. Cruz et al. [6] introduce two lifted edges for the tracking
graph that add additional long-range information to the
objective. The authors of [6] also employ human pose features
extracted from a deep network for the detection-detection
association. Solving the problem with no constraints of speed
while having all the information beforehand, offline
approaches often produce higher accuracy than online
approaches summarized as follows.

Online approaches mainly focus on tracking by detection
[71-[15]. Basically, they employ three models: a state-of-the-
art detection model to produce face detection bounding boxes,
a standalone tracker [16]-[19] to produce face track bounding
boxes, and a deep feature model [20]-[26] to extract
representative features for matching. Combining detection and
tracking methods help alleviate challenges when using stand-
alone trackers such as sudden movements, blurring, pose
variation. By adopting the detection-tracking framework, the
problem of face tracking is then reduced to data association
[27], [28] problem, that is to assign detection boxes to track
boxes. Data association [27], [28] between detection boxes and
track boxes then can be reduced to the bipartite matching
problem (assume no two detection boxes in one frame belong

17|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

to one individual, and so for track boxes) and can be efficiently
solved by Hungarian algorithm [29]. Because bipartite
matching algorithms find 1-1 matches, it is crucial to define a
meaningful affinity metric, representing the relationship
between two nodes, for good performance.

These online approaches can be simplified as follows:

Step 1. For each frame, run a detection model to get
possible positions of faces in that frame (these results will be
referred as detections). Then apply a deep feature model to
extract features of these detections.

Step 2: Also, for that frame, run a tracker for each tracklet
to get new possible positions from the previous position of
each tracklet (these results will be referred as predictions).
Then apply a deep feature model to extract features of these
predictions.

Step 3: A defined metric is employed to relate detections
with predictions. The metric consists of two parts: motion
affinity and appearance affinity. Motion affinity is measured by
the intersection over union (or Mahalanobis distance) of
detections and predictions. Appearance affinity is measured by
Euclidean (or cosine) distance between features of detections
and features of predictions (or possibly of tracklets).

Step 4. After three steps above, the result is an affinity
matrix (N detections x M predictions). Apply a bipartite
matching algorithm to associate new detections with
predictions. Unassigned detections are treated as new
individuals while assigned detections are used to update
tracklets.

Step 5: Repeat steps 1-4 consecutively for frames of a
video.

There are some disadvantages to these online approaches.

Disadvantage 1: At the i-th frame, new detections must be
assigned identifications at that frame. This means the
information in the future cannot taken advantage of.

Disadvantage 2: To decide whether a new detection
belongs to a known identity or is a new identity, the similarity
matrix (computed by motion and appearance affinity) is used.
To have the number of tracklets for one individual as low as
possible, the threshold must be lowered. However, doing that
way, the possibility of one track containing many individuals is
high.

Disadvantage 3: Because detection-tracking method must
run detection model and tracking algorithm for each frame to
get new detections and new predictions, then run deep feature
model (models used for feature extraction are computationally
expensive) for new detections and new predictions, these
models must be lightweight to run in real-time. This can lead to
low accuracy in these models and causes errors for the whole
framework.

Disadvantage 4: Because these approaches compare
detections with predictions, they fail to employ very potential
information that can be taken advantage of when comparing
tracks to tracks. That is the fact that two temporal-overlapped
tracks cannot belong to the same individual.

Vol. 11, No. 3, 2020

To resolve the issues stated above, the authors propose a
semi-online framework for the multi-face tracking problem.
The framework consists of two stages: detection-tracking stage
and tracklet-tracklet association stage. For the detection-
tracking stage, the authors employ the same principle as in
online approaches with a modification: the authors use two
complementary trackers (Kalman filter as a motion tracker and
KCF (Kernelized Correlation Filter) as a visual tracker) to
improve accuracy. For the tracklet-tracklet association, inspired
by offline approaches, the authors treat each tracklet as a node
of a graph and optimize the problem of assigning
identifications globally. In this stage, the authors also introduce
an efficient metric to compare two tracklets so that the
framework can run with high speed.

The rest of this paper is organized as follows. In Related
Works, the authors begin to cover current state-of-the-art
methods for multiple-face tracking in two modes: offline and
online. In Materials and Methods, the authors then turn to the
proposed approach which is inspired by principles used in both
offline and online multiple-face tracking. In this section, the
authors illustrate the overview and detailed stages of the
proposed framework. The authors conclude this section with
contributions to literature. In Results and Discussions, the
authors describe experiments and datasets, report experimental
results, and discuss some implications. The final section
concludes the proposed approach and considers ways to further
improve multiple-face tracking.

Il. RELATED WORKS

A. Offline Tracking

State-of-the-art methods for multi-face offline tracking are
[30]-[32]. These approaches can be reduced to two main
stages: tracklet creation (tracking-by-detection) and tracklet
association. In [30], Zhang et al. first divide the video into
many non-overlapping shots — music or film videos often
contain many shots in different scenes. For each shot, the
framework employs the tracking-by-detection paradigm to
generate tracklets and merge those tracklets into groups by
temporal, kinematic (motion, size) and appearance (deep
feature) information. Then, Zhang et al. link tracklets across
shots/scenes by treating each tracklet as a point, the appearance
similarity between two tracklets as edge and applying the
Hierarchical clustering algorithm to assign tracklets into
groups. To increase the accuracy of the tracklet linking step, a
discriminative feature extractor is needed. The authors of [30]
introduce Learning Adaptive Discriminative Features whereby
a deep extractor will be finetuned online based on samples
from the video. Jin et al. [31] improve the performance of the
mentioned method by using a more powerful detector (Faster
R-CNN) in the tracking-by-detection stage and a more
sophisticated tracklet association schedule. Lin et al. [32] push
it further by applying body parts detector and introduce a co-
occurrence model to generate longer tracklets when faces are
out of camera (but body not) or detector cannot capture faces.
Besides, the work also introduces a refinement scheme for
tracklet association based on Gaussian Process.

18|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

B. Online Tracking

1) Hand-crafted features: One of the attempts to solve the
multi-face online tracking problem that yield good results is
[33]. In this work, Comaschi et al. adopt the tracking-by-
detection mechanism for the pipeline (Fig. 1). Because of the
frontal characteristics of the dataset being used, the work
employs a Haar-like cascade face detector [34] to attain
computational efficiency. In any tracking problem, the ability
to learn appearance change and predict future states of objects
is crucial for the model. Thus, the work introduces a structured
SVM tracker that stores previous patterns and positions of an
object and can predict the new state of an object based on
current spatial and visual information. The tracker is updated
online based on both track prediction and detection. In the data
association step, this work applies Hungarian algorithm for the
cost matrix computed by the intersection over union of
detection boxes and track boxes.

Similar to the above work, Lan et al. [35] also adopt
tracking-by-detection mechanism but with a more sophisticated
tracker update routine. Naiel et al. [36] try to decrease the false
negative rate (miss detection caused by a simple detector) of
the previous pipeline without reducing speed. In this work,
Naiel et al. adopt an advancement of [34] and a color-assisted
tracker as detect and track components respectively (Fig. 2).
The novelty of this work lies in the combined framework.
Instead of running a detector for every frame like previous
work, Naiel et al. propose a trigger mechanism so that the
detector only need to run on some specific frames. Specifically,
the detector is only triggered after a fixed interval (N frames)
or earlier, when there is any tracking fail. The authors compare
the histogram of the new track box with histograms of previous
track boxes. If there is any large discrepancy, the track fail will
trigger detection.

Similarly, the authors of [37] adopt the idea of sparse
detection, modifies Viola-Jones detector in conjunction with a
variant of optical flow to create a combined detection-tracking
model.

2) Deep features: Recently, many works [38]-[42]
integrate deep feature extractors into the tracking framework.
Of those works, Chen et al. [38] adopt the sparse detection
mechanism as described above and use KLT tracker [43] for
the tracking-by-detection stage. In the data association step
between detection boxes and track boxes, deep feature vectors

are used as visual information in addition to spatial
information.
FAST-DT
Input Step 1 Step 2 Step 3
Video . Facg Adapt_ive . Data
Frames Detection Tracking Assaciation
Output S‘Ep 5 Step 4
Faces Target
Post ;
Bounding /<= . = Creation and
Processing Removal

Fig. 1. Multi-Face Detection and Tracking Framework [33].

Vol. 11, No. 3, 2020

Initial detection

Tracking |«

Tracklet
failed?

Buffering
failed tracklets

!

Y

NI frames
tracked?

¥

Detection

Updating
tracklets

Fig. 2. Multi-Face Tracking Detection and Tracking Flow [36].

I1l. METHOD

A. Overview

1) Semi-online tracking: Aiming for practical usage and
from the analysis of the online detection-tracking approaches,
the authors propose a new approach in semi-online manner by
introducing the tracklet-tracklet association stage (Fig. 3).

After getting the detections of a frame, the authors should
match it with tracklets up until the previous frame to determine
identifications for new detections. To achieve this criterion,
using a deep feature extractor is a heavy waste. The authors
propose a way to lighten the process while keeping the
accuracy as high as possible. First, the authors use a light
feature LBPH (Local Binary Pattern Histogram) extractor in
the detection-tracking stage (Fig. 5) for efficient computation
and combine it with information from a tracking method
(Kalman filter) to reduce the errors as much as possible in
creating short tracklets (the authors have not yet assigned
identifications for those tracklets). Then the authors observe
that consecutive face boxes of one tracklet are nearly the same,
thus in the tracklet-tracklet association stage (Fig. 7), the
authors introduce a compression method to get representatives
of a tracklet and apply a deep feature extractor on these
representatives instead of all boxes. The authors then link short
tracklets into long tracklets by using those features as
appearance information. In the linking step, the authors also
introduce a new method for motion similarity between two
tracklets. The tracklet-tracklet association stage resolved much
problems stated above: the future information of frames
sequences is well manipulated; the computational complexity
is cut off from deep feature comparison by applying the new
compression method.

Detection-Tracking stage: The main role of this stage is to
extract the track information of targets in a frame using
detecting and tracking methods. Technically, the detection-
tracking stage processes frame-by-frame for every mini-batch
interval (64 frames) and yields a list of tracklets. The process is
illustrated in Fig. 4.

19|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

Identified

<
tracklets

- |

Tracking-by-detection
stage

m

,| Unassigned

. tracklets

Fig. 3. Our Proposed Method. The Extra Tracklet-Tracklet Association is
Introduced to Improve Accuracy by using more Information and Lighten the
Process before.

[|
[

10383800

AR RN
i, Iy

Assigned
tracklets

P - Tracklet tracklet association

]

]

> -~ - R
|

T

i

Fig. 4. Detection-Tracking Stage (Frame by Frame). Columns are
Consecutive Frames; each Box is a Tracked Box in each Frame; the Arrows
show how a Tracklet is Formed; Each identity is Marked by different Colors in
Each Box.

Frame 7 - - Endvideo?

'y

13

Tracklet - tracklet

PR
association

Detector Tracker — Tracklets

| 5 o
v

Track boxes.

l

| Bipartite matching

Detection boxes

Yes
End of batch?

Fig. 5. Our Detection — Tracking flow Diagram.

The end-to-end framework consists of two stages:

Tracklet-tracklet association stage: At the end of each mini-
batch process, the list of tracklets is passed to this stage. The
main role of this stage is to correct false positives of the
previous stage and connect related tracklet to create long
tracklets and then assign identifications to these new tracklets.
The process is shown in Fig. 6.

Vol. 11, No. 3, 2020
bl R
T

il

Chid

‘ Tracklet -Tracklet association stage ‘

gl

Y%
I B
h

False positive fracklet

Fig. 6. Tracklet-Tracklet Association Stage. from Tracklets Formed before,
the Identities will be Determined in this Stage.

Tracking-by-detection| | ‘

Iyl

Assigned tracklets

Interpolation

l

Extended
tracklets

=

~— Unassigned tracklets —»| Filter

J

~——>»| Feature Extractor

[«—— Filter detections

l

Feature
vectors

Final tracklets

———

Similarity
measurement

Association
algorithm

Similarity matrix ——>»

Fig. 7. Our Tracklet-Tracklet Association flow Diagram.

The proposed framework returns results after the tracklet-
tracklet association stage. For instance, it returns results of
frames 1-st to 64-th after seeing the information of frame 64-th.
This induces a delay of over 2 seconds (64 frames ~ 2 seconds
in normal 30fps videos). The details of the proposed
framework are explained follow.

2) Computational complexity: The proposed framework
can process video streaming in real-time. The speed can reach
around 60fps, which is greater or equal the frequency of
common videos (from 30 to 60fps).

3) Detection-tracking stage: The authors leverage known
detection-tracking approaches with some maodifications to
speed up the stage without sacrificing much performance and
introduce a new stage to improve the performance. The authors
also implemented a framework: the detection-tracking stage
combining S3FD face detector to produce detection boxes,
LBPHs feature extractor to extract the global features, Kalman
Filter tracker to produce tracking boxes, then Hungarian
algorithms for matching the corresponding boxes to create
tracklets.

20|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

4) Tracklet-tracklet association stage: The tracklet -
tracklet association stage uses the motion information
simulated by the spline interpolation and appearance
information from FaceNet deep feature extractor to drop the
false positives and match the suitable tracklets to accurately
assign the ids for targets.

B. Detection — Tracking Stage

1) Goal: In this stage, all the detection boxes of all frames
in a batch will be grouped into short tracklets with the help of a
single object tracking method.

2) Principle: Combining a single tracker and a detector
helps a lot in overcoming the limitation of each single method.
Using single trackers [16]-[19] to track faces in the wild
situation is hard due to occlusion, illumination change, pose
variation, sudden movement, etc. These issues can lead to track
losses, inaccurate boxes (boxes that capture part of the face),
incorrect boxes (boxes that capture the face of another
individual). Moreover, using only a detector faces the
appearance feature confusion if there are faces of different
individuals with high appearance similarity.

The authors observe that detection models yield neater
boxes than single trackers so using detection boxes as new
information for updating single trackers is reasonable.

3) Method: In this stage, a detection model is used to
generate possible bounding boxes of faces in a frame. During
that time, a tracker is also used to predict a new possible
bounding boxes positions from previous frames. Our detection-
tracking algorithm will try to fuse these detection results with
track results in order to better enhance the output, create more
reliable tracklets.

At each frame, after running the detection and tracking
process, the authors get a list of (N) detection boxes and (M)
track boxes. The track boxes are the spatial predictions of
bounding boxes from previous tracklets, while the detection
boxes are the bounding boxes of faces that existed in that
frame. Those faces may be the old faces from the previous
frames, but they may also be the new faces that only exist from
that frame. The main purpose of the detection-tracking
algorithm is to define a meaningful affinity matrix (N x M) so
that it can reflect the relationships between those detection
boxes and track boxes.

Two features that are commonly leveraged are motion and
appearance:

Motion affinity between a detection box and a track box is
defined by the intersection over union (loU) of them.

Appearance affinity between a detection box and a track
box is defined by cosine affinity between LBPH features of
them.

Those two features are used because for a pair of detection
box and track box to be matched, two boxes should be close to
each other with similar size and visual feature.

The authors define a gating unit for each affinity in order to
filter out less likely matches. Because of our intention that if a

Vol. 11, No. 3, 2020

detection box and a track box are considered a possible match,
they must satisfy motion affinity alone and appearance affinity
alone first.

As explained, the authors want both metrics to be high to
treat a pair of detection box and track box a likely match; thus,
if both affinity metrics pass the threshold then the final affinity
is the multiplicative result of motion and appearance affinity,
otherwise is zero.

Sm(6,7)-5a (0,)

if sm(i,)) > ymand s;(i,j) >va @
0 else

Match(i,j) =

where,

s,(i,j) describes the appearance similarity distance
between bounding boxes i and j, its range is from 0 to 1.

sm(i,j) describes the space similarity distance between
bounding boxes i and j, its range is from O to 1.

yum is the threshold for space similarity distance determined
by heuristic (the authors reason that detection box and track
box should be near to be of one individual, so the authors set
this value to 0.3).

ya is the threshold for appearance similarity distance
determined by heuristic (the purpose of this stage is to create
short tracklets, the authors use a high threshold to prevent
wrong matches, specifically 0.9).

Match(i,j) will be used to determine if a detection box
and a track box is a possible match. It only has value if both
motion and appearance metrics are over their thresholds. If one
of the metrics is lower than its respective threshold,
Match(i,j) is set to 0. The thresholds for Match(i,j) are
determined through experiments (value search).

C. Tracklet-Tracklet Association

1) Goal: Short tracklets from the detection-tracking stage
are passed to this stage. The authors will group short tracklets
into long tracklets and assign identifications for them. After
this stage, the boxes in each frame will be marked with
identifications and ready to deliver to the result stream.

2) Principle: The objective of face tracking is that for
everyone existed in a video, the framework should output as
few as possible the number of tracklets for that individual
without wrongly including other faces of other individuals.
This leads to the tradeoff mentioned in Section I. The authors
tackle this with two principles:

Make sure the possibility of wrongly matching is as low as
possible by using tight constraints (high affinity thresholds).

Adopt efficient motion and appearance affinity metrics
between tracklets (different from track-detection) to group
tracklets into identities based on a community discovery
algorithm in this stage.

3) Method: After each batch processing the detection-
tracking stage, the authors have a list of unknown-id tracklets
that are needed to be assigned identifications in this stage. The
authors also have a list of known-id tracklets in the past

21|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

(previous batches). Our job is now trying to assign
identifications to unknown-id tracklets.

The authors formulate the assignment puzzle as an
optimization problem. Each tracklet is treated as a node of a
graph. The edge of two nodes indicates the affinity between the
two. The authors then apply a clustering algorithm, in this
situation, Leiden algorithm [28] on this graph in order to
partition it into subgraphs — groups, each containing tracklets -
nodes of the same individual. The authors put constraints so
that each subgraph will not contain two known-id tracklets or
two temporally overlapped tracklets. One of the essential parts
of this stage is defining a meaningful metric representing the
edge of two nodes. To do that, the authors adopt the
complementary nature of motion and appearance.

a) Motion distance: For motion, the authors introduce a
trajectory difference metric. Given two tracklets (t(i), t(j)), it is
safe to assume that t(i) predate t(j) and there is no temporal
overlap between two tracklets. From the boxes of t(i), the
authors extrapolate forward to get the possible boxes in the
future relative to t(i). From the boxes of t(j), the authors
extrapolate backward to get the possible boxes in the past
relative to (t(j). For extrapolation, the authors assume that face
movement can be modeled as a polynomial function and apply
spline extrapolation. The authors ran model selection to
determine the degree of movement and found that 1-degree
spline performs best. Now the extrapolated parts of the two
overlap temporally, the authors have a pair of overlapped
extrapolated boxes in the same frame f(k). The authors now
calculate a spatial distance between two boxes using two
centers and a diagonal distance between two boxes according
to their diagonals. The authors introduce a weight parameter to
fuse the two distances into one unified box-box distance.

The box-box distance at frame k can be formulated in the
following equation:

Ay = hdgy + (1 — A).dp gy 2
In that,

ds ;. is the Euclidean distance between two centers of two
boxes.

dp is the diagonal distance between two boxes calculated
by the difference in length between two diagonals.

A is the weight parameter to fuse above distances into one
unified distance (the authors search from 0 to 1 with 0.1
interval and choose 0.4 to maximize area under the curve of
success plot).

dy . is the box-box distance at frame k the authors are
going to obtain.

Then the trajectory distance is the average of pair distances:

dy=——"_ dux ®)

T n-m+1

where,
k = m — n are overlapped frame indices.

d)y is the box-box distance at frame k.

Vol. 11, No. 3, 2020

d,, is the trajectory distance, the average box-box distance
over m —n + 1 frames.

b) Appearance distance: For appearance, the authors use
average Euclidean distance between two feature sets of two
tracklets. For each box of a tracklet, the authors have a
respective LBPHSs feature (referred to as light feature) extracted
from the detection-tracking stage. Assume t(i) have N light
feature vectors and t(j) have M light feature vectors, one
straightforward method is to compute N*M Euclidean
distances and use the average as the distance between two
tracklets. However, the task is to distinguish between human
faces, LBPHSs feature is not discriminative enough for this task
that requires fine-grained features. Besides, deep neural
networks have outperformed hand-crafted methods on many
visual tasks that require fine-grained features. Thus, the authors
employ a deep feature extractor (Facenet) [20] for this task.
Specifically, the authors deploy the pretrained model and
feedforward to extract features.

However, deep feature extractors are computationally
expensive and if the authors compute deep features for all
boxes of a tracklet the framework would not run in real-time.
Moreover, temporally adjacent boxes often contain similar
information, so it would be redundant to compute all the deep
features. The authors introduce our compression method to
lower the number of boxes needed to be passed through a deep
feature extractor using already computed light features.

Given a list of light feature vectors of a tracklet, the authors
apply a clustering algorithm on these light feature vectors and
pick out centroids, i.e. Ncompressea bDOXesS, for deep feature
extraction. Only centroids are then passed to the deep feature
extractor to extract 128-dimensional vectors. This way the
authors save a lot of time computing deep features while
keeping the diversity of a tracklet. The authors then use
average Euclidean distance between two deep feature sets of
two tracklets as tracklet - tracklet appearance distance:

4 = 1 1
4 Ncompressed . Mcompressed
Z:;ompressed chompressed Euclid (f (Tl), f(m)) (4)
In that,

M compressealS the number of filtered boxes of the first track
for deep feature extraction.

Neompressea 1S the number of filtered boxes of the second
track for deep feature extraction.

d, is our tracklet — tracklet appearance distance, calculated
as the average Euclidean distance between two deep feature
sets of two tracklets.

f(n) is the feature extracted from the n-th box of
Ncompressed bOXES.

f(m) is the feature extracted from the m-th box of
Mcompressed boxes.

¢) Fusing results: A weighted sum of appearance and
motion affinities is the affinity between two tracklets (used as

22|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

the weight of the edge between two nodes). The authors fuse
two affinities by taking the addition rather than multiplication
as used in the detection-tracking stage because motion affinity
is not reliable enough in case of long-term occlusion or camera
shake. Thus, the authors set the weight for motion affinity low
so that it plays as extra information.

dam(L,)) = Mdy(@,)) + (1 = N).dys(i,)))
Where

dy (i,7) is the motion dissimilarity distance, calculated as
explained.

d, (i, j)is the appearance dissimilarity distance, calculated
as explained.

A is the weight parameter to adjust the importance of each
distance. This value is determined through experiments (the
authors search from 0 to 1 with 0.1 interval and choose 0.3 to
maximize area under the curve for success plot).

d (i,)) is the dissimilarity distance of tracklet i and j.

D. Contributions

This proposed approach tackles challenges related to online
approach above:

e Instead of computing deep features for all faces of one
tracklet as online approaches do, the authors leverage
light features (LBPHs) in the context of tracklet to
efficiently compute deep features (extracted by deep
network) without compromising representative power.
In fact, the compressing method produces a more
accurate representation for a tracklet thanks to diversity
and high detection quality (high-score detected boxes).

e Using this framework, the authors can tighten the
constraints in the tracking-by-detection stage so that the
possibility of wrongly matching is low. Though having
many tracklets after the tracking-by-detection stage,
these tracklets will be grouped in the tracklet-tracklet
association stage.

e The authors do not have to assign identifications to new
detections right away in the detection-tracking stage but
leave it to the tracklet-tracklet association stage. This
way the authors can filter out false positives efficiently
in the pre-processing step.

e The identification assignment step is tracklet-based;
thus, the authors can take advantage of temporal
information of tracklets (co-extant tracklets belong to
different individuals).

e The authors also propose the trajectory difference
metric to account for motion in tracklet-tracklet
comparison.

In application, dataset is limited so using a pre-trained
model and finetuning on small dataset is a reasonable choice.
In this work, the authors show that simply adopting deep
features (extracted by Facenet) and employ Euclidean (or
cosine) metric is not discriminative enough in reference to real-
life data. Therefore, the authors propose to apply Logistic

Vol. 11, No. 3, 2020

discriminant metric learning so that the new embedding space
for real-life data is more discriminative.

The authors speculate that other regions of person, besides
the face, also contain discriminating features. The authors tried
to employ some color-based feature (color name) and texture-
based feature (LOMO) but the results were not comparable,
thus leaving this part for future work.

IV. RESULTS AND DISCUSSIONS

Our experiments are conducted by python on the hardware
GTX 1080 GPU, Intel(R) Xeon(R) CPU E5-2620 v4 @
2.10GHz, 16GB RAM, while the MobiFace paper [44] used a
desktop machine with Intel i9-7900X CPU (3.30GHz) and one
GTX 1080 Ti GPU. Therefore, it’s fair to compare the speed of
our method versus other methods on MobiFace. For OTB
dataset [45], RFTD method [46] used a setup with Intel Core i7
with 3.07GHz clock with no GPU and CXT and SCM used
similar computational power, so the authors only compare the
performance of our method versus other methods in terms of
accuracy.

A. The Purpose of Experiments on MobiFace and OTB
Datasets

In order to prove the efficiency of our tracking framework,
the authors conducted two comparisons:

Comparing single trackers with tracking-by-detection
approaches through results from MobiFace Dataset. The
purpose is to prove that integrate the detection method will
enhance the result more than using a single tracker.

Comparing tracking-by-detection approaches with our
approach through results from OTB Dataset. The purpose is to
prove that using the light feature to process in the tracking-by-
detection stage and using the deep feature in the tracklet -
tracklet association stage in conjunction with motion affinity is
a significant improvement.

1) Experiments on MobiFace dataset

a) About the dataset: MobiFace dataset [44] is the first
dataset for single face tracking in mobile situations. Due to the
lack of engrossing face tracking datasets before MobiFace, the
performance of pioneer face trackers was reported on a few
videos or on small subsets of the OTB dataset, and the
comparison between approaches was limited. The introduced
dataset provides a unified benchmark with different attributes
for future development in this field. Some samples of the
dataset are illustrated in Fig. 8.

The authors collected 80 unedited live-streaming mobile
videos captured by 70 different smartphone users in fully
unconstrained environments and manually labeled over 95.000
bounding boxes on all frames. In order to cover typical usage
of mobile device camera, the authors fetched videos from
YouTube mobile live-streaming channels. Most of the videos
are captured and uploaded under fully unconstrained
environments without any extra video editing or visual effects.
6021 videos were collected and discarded under strict criteria
that the target faces should appear at least in 10% of the video
frames, and the target faces should not always stay still to serve
the purpose of visual tracking. Besides the common 8 attributes

23|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

in object tracking datasets, the authors proposed six additional
attributes commonly seen in mobile situations.

The authors also fine-tuned and improved a handful of
state-of-the-art trackers and perform evaluations on the dataset.
Through comparing with those results, the authors can evaluate
the efficiency of our method.

b) Setup the experiments: Note that MobiFace dataset is
designed for supervised trackers - an initial box of a targeted
face is specified in the first frame. However, our method is
designed to work in an unsupervised way (the authors do not
need initial boxes) and can track multiple targets at a time. In
order to adapt to the dataset, the authors must reduce the
system to fit with the protocol of the dataset. Specifically, in
the first frame of each video, the authors compare the detected
result of our system with the initial box provided by the dataset
to specify the targeted face and then return track results of that
target only.

The video is only stored in YouTube so from the time the
authors access it, the authors are unable to collect all videos
from the dataset because some has been deleted by the owners.

The authors consider the three metrics proposed in the
dataset: normalized precision, success rate, frames per second.
As most of the metrics are in plot form, the authors will explain
the way to extract an important metric from the plot, the area
under the curve (AUC). With N is the number of thresholds
used to draw the plot andn = 1,2,3,...,N. The curve was
drawn from points with coordinate (t,, f,.), t, is the threshold
value at that point and f, is the evaluated value of our
algorithm at that threshold, i.e. location error of precision plot,
overlap score of success plot. The AUC is then calculated by

AUC = Zn(tn - tn—l) fn (6)

Normalised precision plot: Precision plot is a widely used
evaluation metric for the tracking field. The precision is
described as the location error, which is the Euclidean distance
between the center location of the tracked face and the ground
truth bounding box. This metric reflects how far the tracker has
drifted from the targeted face. However, as the videos differ
greatly in resolution, the authors of [44] adopt the recently
proposed normalised precision value. The size of the frame is
used for the normalisation, and the authors of [44] rank the
trackers based on the area under the curve (AUC) for
normalised precision value between 0 and 0.5.

b diAnRARAAE
B3 1.1 X
PRI

Fig. 8. Some Example Frame from the MobiFace Dataset [44]. Red ground
Truth Bounding Boxes are Annotated by the Authors.

Vol. 11, No. 3, 2020

Success plot: Overlap score is also another commonly used
metric in the tracking field. Given a ground truth bounding box
74 Of the target, the predicted bounding box of our algorithm is
7,. Then the overlap score can be computed by the intersection
over union (loU) of those two boxes as S = :*"Z% , Where the

g 14

N and U represent the intersection and union of two rectangles,
respectively. The success plot reflects the percentage of frames
in which the intersection over union (loU) of the predicted and
ground truth bounding box is greater than a given threshold.
Usually, the average success rate at 0.5 threshold is enough for
evaluation. In addition, the area under the curve (AUC), which
is the accumulated success rate can also be used for
measurement. The authors can use those metrics
interchangeably to summarize the performance.

Frames Per Second (FPS): the average speed of the
evaluated tracker running across all the sequences. The
initialization time is not considered. Because of the
applicability concern, a mobile face tracker must be able to run
at high speed (either on CPU or GPU) to allow maximum
potential migration to actual mobile devices. Due to the lack of
implementation of competitive trackers on mobile platforms,
the authors can only use the FPS measured on the desktop
environment, which indicate the relative efficiency of the
trackers for evaluating and comparing.

¢) Experiment results: Evaluation metrics of our method
and state-of-the-art methods are illustrated in Fig. 9 and a
detailed comparison is shown in Table I.

TABLE. I. A DETAILED COMPARISON BETWEEN OUR METHOD AND
MOBIFACE EVALUATED RESULTS

Nl Pricson | Suces | s
MDNet-MBF+R 0.800 0.601 1.79
MetaMDNet-MBF+R | 0.767 0.571 1.03
MetaMDNet-YTF+R 0.744 0.566 1.06
MDNet-MBF 0.772 0.549 1.58
SiamFC-MBF+R 0.758 0.526 53.14
SiamFC-MBF 0.750 0.521 81.54
Proposed framework 0.787 0.681 44,382

& The authors profile the program and exclude reading image from disk time and writing image to disk
time before calculating speed (details are in test.profile file in our source code).

d) Discussion: Because our approach is targeted for the
multi-face tracking field. In order to make it work with the
dataset, the authors run the framework over the dataset and get
all tracks of targets in the video, then according to the
initialized ground truth box, the authors define the target and
return the target track results only. Because the dataset is from
unconstrained environments with many existing faces, it is a
noticeable effort of our tracker to avoid mistakes between
tracklets and output the correct results.

As shown in the above plots, our method has an advantage
in the success plot, but not the precision plot. Precision is
affected by the Euclidean distance between the center of a
ground truth bounding box and the center of a tracked box.
Because high normalised error still treats a tracked box that

24|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

drifts out of a face (high Euclidean distance between two
centers) as a true prediction, trackers that still maintain a track
when the box drifts out of a face perform better with high
normalized error. In the proposed framework, when the tracked
box drifts out of a face, the algorithm terminates the tracklet
instantly; therefore, with high normalised error, our tracker
performs the same as with low normalised error while other
trackers yield noticeably different results with different
normalised errors.

The success plot might be more practical for applications
that require high loU between prediction boxes and ground
truth boxes. The success plots of trackers evaluated in
MobiFace dataset start very high, but the slope is very steep.
Starting from above 0.8 success rate for threshold O, to
threshold 0.5, they drop to below 0.7 success rate. The steep
slope indicates predicted boxes of those trackers are not always
aligned with ground truth boxes. Our starting point is
somewhere below 0.8 success rate but maintains the success
rate over the overlap threshold change. At threshold 0.5, our
approach still has a high success rate, above 0.7, indicating our
boxes is closely aligned with ground truth boxes. At 0.5
threshold, the predicted boxes cover most of the track target
and can be well used in application. Besides, as the main target
of ours is for practical usages, a good success plot and success
rate at 0.5 threshold - while keeping the speed - are acceptable.

Normalised precision plot on test set

T —

N
i
\;
|
g
\
\
\
™"
Al

——
e
-
0.7r
=
=]
] k- s = = MDNet-MBF+R [0.800]
A 0.6 MetaMDNct+R [0.785]
s MDNet-MBF [0.772]
= ctaMDNet-MBF+R [0.767] | |
D'Uj MDNet [0.766]
B MDNet+R [0.766]
& A MetaMDNet-MBF [0.762]
Z04 - -MBF+R [0.758]
= — MetaMDNet [0.751]
= 0.3 SiamFC-MBF [0.750]
& v SiamFC-YTF+R (0.745]
Z MetaMDNet-YTF+R [0.744]
n) = MDNet-YTF [0.743]
- == = MetaMDNet-YTF [0.742]
MDNet-YTF+R [0.724]
== = SiamFC-YTF [0.720]
0.1
J SiamFC [0.696]
m—SiamPC4R (0.654]
0 L L L 5 §
0 0.1 0.2 0.3 0.4 0.5
Normalised location error threshold
Normalised precision plot on testing sequences
0.8
0.7 4
c 0.6
=}
a
o
2 05
a
E = FTracker: [0.787]
a2
= 0.4
£
£
S
Z 03
0.2
0.1
0.0

0.2 0.3 0.4

Normalised location error threshold

0.1

o
=]

05

@

(b)

Vol. 11, No. 3, 2020

2) Experiments on OTB (Object Tracking Benchmark)
dataset

a) About the dataset: OTB Dataset [45] is one of the
most famous datasets specifically used for benchmarking the
object trackers since its appearance. The authors worked to
collect and annotate most of the common tracking sequences
from different datasets. They also classified those sequences
into multiple categories by challenges as in Table Il and
selected 50 difficult and representative ones in the TB-50
dataset for an in-depth analysis. The full dataset contains more
sequences of human (36 body and 26 face/head videos) than
other categories because human target objects have the most
practical usages, some samples of the dataset is illustrated in
Fig. 10.

Before the introduction of MobiFace dataset, face tracking
methods could only be evaluated on small self-collected
datasets or a subset of OTB dataset. The whole dataset is
designed for the object tracking algorithms, but the authors
selectively pick out the sequences with faces to conduct
experiments and compare with those methods mentioned
before. The chosen face subset is described in Table Ill, the top
10 sequences are referred to as the difficult set and top 15 is the
normal set [46].

Success plot on test set

= = = MDNet-MBF+R [0.601] - 1.79fps

0.6F

MctaMDNet-YTF+R [0.566] - 1.06fps [y
M Vet+R [0.559] - 0.57fps
MBF [0.554] - 0.73fps
A 1BF [0.549] - 1.58fps
MDNet+R [0.530] - 1.76fps

wn

»
7

| [== = SiamFC-MBF+R [0.526] - 53.14fps
1.02fps
54

w= = MDNet-YTF [0.52
of 03 H" ~ SiamFC-MBF [0.521] s
L SiamFC-YTF+R [0.519] - 52.13fps
e MetaMDNet [0.518] - 0.60fps
02} s MDNet [0.516] - 1.50fps
= e SiamFC+R [0.510] - 64.00fps
= = SiamFC-YTF [0.507] - 54.82fps
(0.1 ||™ = MewaMDNet-YTF [0.506] - 1.06fps
< wes = = MDNet-YTF+R [0.498] - 1.19fps
s SiamFC [0.477] - 37.98fps

Success rate

0"
0 0.2

0.4 0.6
Overlap threshold

0.8 1

Success plot on testing sequences

0.8

0.7 4

0.6

0.51

—— FTracker: [0.681]

0.4 4

Success rate

0.3

0.2+

014

0.0

0.4 0.6 0.8

Overlap threshold

0.0 0.2 1.0

Fig. 9. Evaluation Results of Trackers on MobiFace Test Set: (a) Results from MobiFace Paper [44], (b) Results on our Method.

25|Page

www.ijacsa.thesai.org

TABLE. Il
VALUES IN THE PERFORMANCE EVALUATION FROM OTB DATASET [45]

(IJACSA) International Journal of Advanced Computer Science and Applications,

ANNOTATED SEQUENCE ATTRIBUTES WITH THE THRESHOLD

Vol. 11, No. 3, 2020

However, the dataset is also designed for the single object
tracker. So, evaluation on this dataset also cannot reflect all the
potential power of our system, but the authors can use that

Attribute | Description result to relatively compare with previous trackers in order to
v llumination Variation - The illumination in the target region is verify the power of the proposed framework.
significantly changed .
Scale Variation - The ratio of the bounding boxes of the first _ b) Set up t_he experiments: Because the authors f)f
sv frame and the current frame is out of range. [tl'ts]'ts > 1(t, = MobiFace dataset inherit a lot of Iegacy from OTB dataset, in
2) s general, the setup stage and evaluation stage for OTB Dataset
OoCC Occlusion - The target is partially or fully occluded. are the same as the MobiFace dataset.
DEE Deformation - Non-rigid object deformation. c) Experimental results: Evaluation metrics of our
MB Motion Blur - The target region is blurred due to the motion of the m_ethOd and state-of-the-art met_hOdS_ are IIIUStrated in Fig. 11,
target or the camera. Fig. 12, and a detailed comparison is shown in Table IV and
EM Fast Motion - The motion of the ground truth is larger than t,, Table V.
pixels (¢,, = 20) d) Discussion: The precision plots in Fig. 11 are good.
IPR In-Plane Rotation - The target rotates in the image plane. The overall results are quite good, and the slope is shallow as
OPR Out-of-Plane Rotation - The target rotates out of the image plane predicted after witnessing above experiments. However, the
oV Out-of-View - Some portion of the target leaves the view authors. have no data from other works to have an in-depth
BC Background Clutters - The background near the target has similar comparison.
color or texture as the target
: :) TABLE. IV. Top TRACKER COMPARISON ON OTB DATASET FACE SUBSET
LR Low Resolutlo_n - The number of pixels inside the ground-truth (NORMAL SET). EVALUATED RESULTS ARE FROM RFTD PAPER [46]
bounding box is less than t,. (t,, = 400)
Face Tracker Success Plot AUC | Success plot Threshold (0.5)
TABLE. lll. ANNOTATED SEQUENCE ATTRIBUTES WITH THE THRESHOLD RETD 55.2 713
VALUES IN THE PERFORMANCE EVALUATION FROM OTB DATASET [45] : :
Struck 55.9 67.6
Sequence Challenge
1| Soccer IV, SV, OCC, MB, FM, IPR, OPR, BC SCM 58.3 726
2 Freeman4 SV, OCC, IPR, OPR ASLA 538 62.9
3 Freemanl SV, IPR, OPR CSK 48.0 56.8
4 FleetFace SV, DEF, MB, FM, IPR, OPR L1APG 50.7 59.7
5 Freeman3 SV, IPR, OPR OAB 42.6 48.9
6 Girl SV, OCC, IPR, OPR TLD 51.8 67.3
7 | Jumping MB, FM CXT 57.3 65.7
8 Trellis IV, SV, IP