The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving
  • Editorial Board

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Computing Conference 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future of Information and Communication Conference (FICC) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Adaptive Channel Estimation Techniques for MIMO OFDM Systems

Author 1: Md Masud Rana
Author 2: Md. Kamal Hosain

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2010.010620

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 1 Issue 6, 2010.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In this paper, normalized least mean (NLMS) square and recursive least squares (RLS) adaptive channel estimator are described for multiple input multiple output (MIMO) orthogonal frequency division multiplexing (OFDM) systems. These CE methods uses adaptive estimator which are able to update parameters of the estimator continuously, so that the knowledge of channel and noise statistics are not necessary. This NLMS/RLS CE algorithm requires knowledge of the received signal only. Simulation results demonstrated that the RLS CE method has better performances compared NLMS CE method for MIMO OFDM systems. In addition, the utilizing of more multiple antennas at the transmitter and/or receiver provides a much higher performance compared with fewer antennas. Furthermore, the RLS CE algorithm provides faster convergence rate compared to NLMS CE method. Therefore, in order to combat the more channel dynamics, the RLS CE algorithm is better to use for MIMO OFDM systems.

Keywords: MIMO; NLMS; OFDM; RLS

Md Masud Rana and Md. Kamal Hosain, “Adaptive Channel Estimation Techniques for MIMO OFDM Systems ” International Journal of Advanced Computer Science and Applications(IJACSA), 1(6), 2010. http://dx.doi.org/10.14569/IJACSA.2010.010620

@article{Rana2010,
title = {Adaptive Channel Estimation Techniques for MIMO OFDM Systems },
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2010.010620},
url = {http://dx.doi.org/10.14569/IJACSA.2010.010620},
year = {2010},
publisher = {The Science and Information Organization},
volume = {1},
number = {6},
author = {Md Masud Rana and Md. Kamal Hosain}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2021

29-30 April 2021

  • Virtual

Computing Conference 2021

15-16 July 2021

  • London, United Kingdom

IntelliSys 2021

2-3 September 2021

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2021

28-29 October 2021

  • Vancouver, Canada
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© 2018 The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org