The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving
  • Editorial Board

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Computing Conference 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future of Information and Communication Conference (FICC) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Real-Time Healthcare Monitoring System using Online Machine Learning and Spark Streaming

Author 1: Fawzya Hassan
Author 2: Masoud E. Shaheen
Author 3: Radhya Sahal

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2020.0110977

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 9, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The real-time monitoring and tracking systems play a critical role in the healthcare field. Wearable medical devices with sensors, mobile applications, and health cloud have continuously generated an enormous amount of data, often called streaming big data. Due to the higher speed of the streaming data, it is difficult to ingest, process, and analyze such huge data in real-time to make real-time actions in case of emergencies. Using traditional methods that are inadequate and time-consuming. Therefore, there is a significant need for real-time big data stream processing to guarantee an effective and scalable solution. So, we proposed a new system for online prediction to predict health status using Spark streaming framework. The proposed system focuses on applying streaming machine learning models (i.e. streaming linear regression with SGD) on streaming health data events ingested to spark streaming through Kafka topics. The experimental results are done on the historical medical datasets (i.e. diabetes dataset, heart disease dataset, and breast cancer dataset) and generated dataset which is simulated to wearable medical sensors. The historical datasets have shown that the accuracy improvement ratio obtained using the diabetes disease dataset is the highest one with respect to the other two datasets with an accuracy of 81%. For generated datasets, the online prediction system has achieved accuracy with 98% at 5 seconds window size. Beyond this, the experimental results have proofed that the online prediction system can online learn and update the model according to the new data arrival and window size.

Keywords: Online machine learning; streaming data; Apache Spark; Apache Kafka; spark streaming machine learning

Fawzya Hassan, Masoud E. Shaheen and Radhya Sahal, “Real-Time Healthcare Monitoring System using Online Machine Learning and Spark Streaming” International Journal of Advanced Computer Science and Applications(IJACSA), 11(9), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110977

@article{Hassan2020,
title = {Real-Time Healthcare Monitoring System using Online Machine Learning and Spark Streaming},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110977},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110977},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {9},
author = {Fawzya Hassan and Masoud E. Shaheen and Radhya Sahal}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2021

29-30 April 2021

  • Virtual

Computing Conference 2021

15-16 July 2021

  • London, United Kingdom

IntelliSys 2021

2-3 September 2021

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2021

28-29 October 2021

  • Vancouver, Canada
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© 2018 The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org