The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • GIDP 2026
  • ICONS_BA 2025

Computer Vision Conference (CVC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • RSS Feed

DOI: 10.14569/IJACSA.2025.0161028
PDF

A Hybrid Deep Learning and Forensic Approach for Robust Deepfake Detection

Author 1: Sales Aribe Jr

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 16 Issue 10, 2025.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The rapid evolution of generative adversarial networks (GANs) and diffusion models has made synthetic media increasingly realistic, raising societal concerns around misinformation, identity fraud, and digital trust. Existing deepfake detection methods either rely on deep learning, which suffers from poor generalization and vulnerability to distortions, or forensic analysis, which is interpretable but limited against new manipulation techniques. This study proposes a hybrid framework that fuses forensic features—including noise residuals, JPEG compression traces, and frequency-domain descriptors—with deep learning representations from convolutional neural networks (CNNs) and vision transformers (ViTs). Evaluated on benchmark datasets (FaceForensics++, Celeb-DF v2, DFDC), the proposed model consistently outperformed single-method baselines and demonstrated superior performance compared to existing state-of-the-art hybrid approaches, achieving F1-scores of 0.96, 0.82, and 0.77, respectively. Robustness tests demonstrated stable performance under compression (F1 = 0.87 at QF = 50), adversarial perturbations (AUC = 0.84), and unseen manipulations (F1 = 0.79). Importantly, explainability analysis showed that Grad-CAM and forensic heatmaps overlapped with ground-truth manipulated regions in 82 per cent of cases, enhancing transparency and user trust. These findings confirm that hybrid approaches provide a balanced solution—combining the adaptability of deep models with the interpretability of forensic cues—to develop resilient and trustworthy deepfake detection systems.

Keywords: Adversarial robustness; deepfake detection; diffusion models; explainable AI; forensic fusion; multimedia forensics; trustworthy AI

Sales Aribe Jr. “A Hybrid Deep Learning and Forensic Approach for Robust Deepfake Detection”. International Journal of Advanced Computer Science and Applications (IJACSA) 16.10 (2025). http://dx.doi.org/10.14569/IJACSA.2025.0161028

@article{Jr2025,
title = {A Hybrid Deep Learning and Forensic Approach for Robust Deepfake Detection},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2025.0161028},
url = {http://dx.doi.org/10.14569/IJACSA.2025.0161028},
year = {2025},
publisher = {The Science and Information Organization},
volume = {16},
number = {10},
author = {Sales Aribe Jr}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Computer Vision Conference (CVC) 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

Artificial Intelligence Conference 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computer Vision Conference
  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org