Future of Information and Communication Conference (FICC) 2025
28-29 April 2025
Publication Links
IJACSA
Special Issues
Future of Information and Communication Conference (FICC)
Computing Conference
Intelligent Systems Conference (IntelliSys)
Future Technologies Conference (FTC)
International Journal of Advanced Computer Science and Applications(IJACSA), Volume 16 Issue 3, 2025.
Abstract: This project develops an AI-based anomaly detection system. In the field of autonomous driving, abnormal data will directly affect the safety of autonomous driving systems, especially in terms of abnormal camera sensor data. Sensor failure, environmental changes, or bad weather can lead to the emergence of abnormal data, which can affect the decision-making process and may have disastrous consequences. Based on the above problems, this study addresses this challenge by proposing a hybrid anomaly detection model (called CAE-RF) that combines convolutional autoencoders and random forest algorithms to achieve efficient and accurate identification of abnormal data patterns to improve the safety of autonomous driving systems. The proposed method will use convolutional autoencoders to calculate the reconstruction error and combine the hidden features extracted by the encoder as the input of the random forest to distinguish normal data from abnormal data. The key performance indicators such as accuracy, precision, recall, and F1 score are used to evaluate the model, and the robustness is guaranteed by cross-validation. Experimental results show that the CAE-RF model has an accuracy of 92% in distinguishing normal and abnormal data. Compared with traditional methods, the CAE-RF model achieves higher accuracy and reliability. The implementation of this model can timely identify and process abnormal data, reduce the risks brought by sensor failure or external environment changes, prevent potential accidents, and improve the safety and reliability of the autonomous driving system.
Geng Shengwen and Mohd Hafeez Osman, “Abnormal Data Detection Model Based on Autoencoder and Random Forest Algorithm: Camera Sensor Data in Autonomous Driving Systems” International Journal of Advanced Computer Science and Applications(IJACSA), 16(3), 2025. http://dx.doi.org/10.14569/IJACSA.2025.0160322
@article{Shengwen2025,
title = {Abnormal Data Detection Model Based on Autoencoder and Random Forest Algorithm: Camera Sensor Data in Autonomous Driving Systems},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2025.0160322},
url = {http://dx.doi.org/10.14569/IJACSA.2025.0160322},
year = {2025},
publisher = {The Science and Information Organization},
volume = {16},
number = {3},
author = {Geng Shengwen and Mohd Hafeez Osman}
}
Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.