The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2025.0160583
PDF

Adaptive Observer-Based Sliding Mode Secure Control for Nonlinear Descriptor Systems Against Deception Attacks

Author 1: M. Kchaou
Author 2: L Ladhar
Author 3: M Omri
Author 4: R. Abbassi
Author 5: H. Jerbi

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 16 Issue 5, 2025.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: This paper delves into an advanced control scheme that combines the sliding mode control (SMC) strategy with a meta-heuristic method to examine the issue of security control for non-linear systems that are vulnerable to deception attacks on their sensors and actuators. The proposed approach focuses on the development of a secure SMC law for nonlinear descriptor systems described by TS fuzzy models. A fuzzy observer is designed to accurately estimate the states that may affected by unpredictable sensor attacks, and an adaptive SMC controller is synthesized based on the estimated information to drive the observer’s state trajectories towards the sliding surface and then maintaining the sliding motion thereafter. Afterward, sufficient conditions are established to ensure the admissibility of the closed-loop system. Then, the secretary bird optimization algorithm (SBOA), is explored for tackling an optimization problem with non-convex and nonlinear constraints as is defined to enhance the system’s performance under threats. Ultimately, a simulation study through a practical example is performed to showcase the effectiveness of the proposed control scheme in maintaining system performance, even in the presence of attacks.

Keywords: Descriptor systems; TS fuzzy models; fuzzy observer; deception attacks; adaptive sliding mode; SBOA

M. Kchaou, L Ladhar, M Omri, R. Abbassi and H. Jerbi, “Adaptive Observer-Based Sliding Mode Secure Control for Nonlinear Descriptor Systems Against Deception Attacks” International Journal of Advanced Computer Science and Applications(IJACSA), 16(5), 2025. http://dx.doi.org/10.14569/IJACSA.2025.0160583

@article{Kchaou2025,
title = {Adaptive Observer-Based Sliding Mode Secure Control for Nonlinear Descriptor Systems Against Deception Attacks},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2025.0160583},
url = {http://dx.doi.org/10.14569/IJACSA.2025.0160583},
year = {2025},
publisher = {The Science and Information Organization},
volume = {16},
number = {5},
author = {M. Kchaou and L Ladhar and M Omri and R. Abbassi and H. Jerbi}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Computer Vision Conference (CVC) 2026

16-17 April 2026

  • Berlin, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org