The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computer Vision Conference (CVC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2025.0160619
PDF

A Steel Surface Defect Detection Method Based on Lightweight Convolution Optimization

Author 1: Cong Chen
Author 2: Ming Chen
Author 3: Hoileong Lee
Author 4: Yan Li
Author 5: Jiyang YU

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 16 Issue 6, 2025.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Surface defect detection of steel, especially the recognition of multi-scale defects, has always been a major challenge in industrial manufacturing. Steel surfaces not only have defects of various sizes and shapes, which limit the accuracy of traditional image processing and detection methods in complex environments. However, traditional defect detection methods face issues of insufficient accuracy and high miss-detection rates when dealing with small target defects. To address this issue, this study proposes a detection framework based on deep learning, specifically YOLOv9s, combined with the C3Ghost module, SCConv module, and CARAFE upsampling operator, to improve detection accuracy and model performance. First, the SCConv module is used to reduce feature redundancy and optimize feature representation by reconstructing the spatial and channel dimensions. Second, the C3Ghost module is introduced to enhance the model’s feature extraction ability by reducing redundant computations and parameter volume, thereby improving model efficiency. Finally, the CARAFE upsampling operator, which can more finely reorganize feature maps in a content-aware manner, optimizes the upsampling process and ensures detailed restoration of high-resolution defect regions. Experimental results demonstrate that the proposed model achieves higher accuracy and robustness in steel surface defect detection tasks compared to other methods, effectively addressing defect detection problems.

Keywords: YOLOv9s; steel surface defect detection; C3Ghost module; SCConv module; CARAFE upsampling operator

Cong Chen, Ming Chen, Hoileong Lee, Yan Li and Jiyang YU, “A Steel Surface Defect Detection Method Based on Lightweight Convolution Optimization” International Journal of Advanced Computer Science and Applications(IJACSA), 16(6), 2025. http://dx.doi.org/10.14569/IJACSA.2025.0160619

@article{Chen2025,
title = {A Steel Surface Defect Detection Method Based on Lightweight Convolution Optimization},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2025.0160619},
url = {http://dx.doi.org/10.14569/IJACSA.2025.0160619},
year = {2025},
publisher = {The Science and Information Organization},
volume = {16},
number = {6},
author = {Cong Chen and Ming Chen and Hoileong Lee and Yan Li and Jiyang YU}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Computer Vision Conference
  • Healthcare Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org