The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computer Vision Conference (CVC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2025.0160628
PDF

Enhancing Organizational Threat Profiling by Employing Deep Learning with Physical Security Systems and Human Behavior Analysis

Author 1: D. H. Senevirathna
Author 2: W. M. M. Gunasekara
Author 3: K. P. A. T. Gunawardhana
Author 4: M. F. F. Ashra
Author 5: Harinda Fernando
Author 6: Kavinga Yapa Abeywardena

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 16 Issue 6, 2025.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Organizations need a comprehensive threat profiling system that uses cybersecurity methods together with physical security methods because advanced cyber-threats have become more complex. The objective of this study is to implement deep learning models to boost organizational threat identification via human behavior assessment and continuous surveillance activities. Our method for human behavior analysis detects insider threats through assessments of user activities that include logon patterns along with device interactions and measurement of psychometric traits. CNN, together with Random Forest classifiers, has been utilized to identify behavioral patterns that indicate security threats from inside the organization. Our model uses labeled datasets of abnormal user behavior to properly differentiate between normal and dangerous user activities with high accuracy. The physical security component improves surveillance abilities through the use of MobileNetV2 for real-time anomaly detection in CCTV video data. The system receives training to detect security breaches and violent and unauthorized entry attempts, and specific security-related incidents. The combination of transfer learning and fine-tuning methodologies enables MobileNetV2 to deliver outstanding security anomaly detection alongside low power requirements, thus it fits into Security Operations Centers operations. Experiments using our framework operate on existing benchmark collection sets that assess cybersecurity, together with physical security threats. Experimental testing establishes high precision levels for detecting insider threats along with physical security violations by surpassing conventional rule-based methods. Security Operation Centers gain an effective modern threat profiling solution through the application of deep learning models. The investigation generates better organization defenses against cyber-physical threats using behavioral analytics together with intelligent surveillance systems.

Keywords: Deep learning; physical security; human behavior analysis; security operation centers; threat profiling

D. H. Senevirathna, W. M. M. Gunasekara, K. P. A. T. Gunawardhana, M. F. F. Ashra, Harinda Fernando and Kavinga Yapa Abeywardena, “Enhancing Organizational Threat Profiling by Employing Deep Learning with Physical Security Systems and Human Behavior Analysis” International Journal of Advanced Computer Science and Applications(IJACSA), 16(6), 2025. http://dx.doi.org/10.14569/IJACSA.2025.0160628

@article{Senevirathna2025,
title = {Enhancing Organizational Threat Profiling by Employing Deep Learning with Physical Security Systems and Human Behavior Analysis},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2025.0160628},
url = {http://dx.doi.org/10.14569/IJACSA.2025.0160628},
year = {2025},
publisher = {The Science and Information Organization},
volume = {16},
number = {6},
author = {D. H. Senevirathna and W. M. M. Gunasekara and K. P. A. T. Gunawardhana and M. F. F. Ashra and Harinda Fernando and Kavinga Yapa Abeywardena}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Computer Vision Conference
  • Healthcare Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org