The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computer Vision Conference (CVC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2025.0160609
PDF

Application of Deep Learning-Based Image Compression Restoration Technology in Power System Unstructured Data Management

Author 1: Junjie Zha
Author 2: Aiguo Teng
Author 3: Xinwen Shan
Author 4: Hao Tang
Author 5: Zihan Liu

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 16 Issue 6, 2025.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In power-system unstructured-data management, a large volume of images from inspection drones, substation cameras, and smart meters is heavily compressed due to bandwidth and storage constraints, resulting in lower resolution that hinders defect detection and maintenance decisions. Although deep-learning super-resolution (SR) techniques have made significant advances, real-world deployments still require a balance between reconstruction accuracy and model lightweightness. To meet this need, we introduce a channel-attention-embedded Transformer SR method (CAET). The approach adaptively injects channel attention into both the Transformer’s global features and the convolutional local features, harnessing their complementary strengths while dynamically enhancing critical information. Tested on five public datasets and compared with six representative algorithms, CAET achieves the best or second-best performance across all upscaling factors; at 4× enlargement, it outperforms the advanced SwinIR method by 0.09 dB in PSNR on Urban100 and by 0.30 dB on Manga109, with noticeably improved visual quality. Experiments demonstrate that CAET delivers high-precision, low-latency restoration of compressed images for the power sector while keeping model complexity low.

Keywords: Image compression; attention mechanism; multimodal fusion; unstructured data in the power industry; image data

Junjie Zha, Aiguo Teng, Xinwen Shan, Hao Tang and Zihan Liu, “Application of Deep Learning-Based Image Compression Restoration Technology in Power System Unstructured Data Management” International Journal of Advanced Computer Science and Applications(IJACSA), 16(6), 2025. http://dx.doi.org/10.14569/IJACSA.2025.0160609

@article{Zha2025,
title = {Application of Deep Learning-Based Image Compression Restoration Technology in Power System Unstructured Data Management},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2025.0160609},
url = {http://dx.doi.org/10.14569/IJACSA.2025.0160609},
year = {2025},
publisher = {The Science and Information Organization},
volume = {16},
number = {6},
author = {Junjie Zha and Aiguo Teng and Xinwen Shan and Hao Tang and Zihan Liu}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Computer Vision Conference
  • Healthcare Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org