The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2013.041107
PDF

Blind Turing-Machines: Arbitrary Private Computations from Group Homomorphic Encryption

Author 1: Stefan Rass

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 4 Issue 11, 2013.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Secure function evaluation (SFE) is the process of computing a function (or running an algorithm) on some data, while keeping the input, output and intermediate results hidden from the environment in which the function is evaluated. This can be done using fully homomorphic encryption, Yao's garbled circuits or secure multiparty computation. Applications are manifold, most prominently the outsourcing of computations to cloud service providers, where data is to be manipulated and processed in full confidentiality. Today, one of the most intensively studied solutions to SFE is fully homomorphic encryption (FHE). Ever since the first such systems have been discovered in 2009, and despite much progress, FHE still remains inefficient and difficult to implement practically. Similar concerns apply to garbled circuits and (generic) multiparty computation protocols. In this work, we introduce the concept of a blind Turing-machine, which uses simple homomorphic encryption (an extension of ElGamal encryption) to process ciphertexts in the way as standard Turing-machines do, thus achieving computability of any function in total privacy. Remarkably, this shows that fully homomorphic encryption is indeed an overly strong primitive to do SFE, as group homomorphic encryption with equality check is already sufficient. Moreover, the technique is easy to implement and perhaps opens the door to efficient private computations on nowadays computing machinery, requiring only simple changes to well-established computer architectures.

Keywords: secure function evaluation; homomorphic encryption; chosen ciphertext security; cloud computing

Stefan Rass, “Blind Turing-Machines: Arbitrary Private Computations from Group Homomorphic Encryption” International Journal of Advanced Computer Science and Applications(IJACSA), 4(11), 2013. http://dx.doi.org/10.14569/IJACSA.2013.041107

@article{Rass2013,
title = {Blind Turing-Machines: Arbitrary Private Computations from Group Homomorphic Encryption},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2013.041107},
url = {http://dx.doi.org/10.14569/IJACSA.2013.041107},
year = {2013},
publisher = {The Science and Information Organization},
volume = {4},
number = {11},
author = {Stefan Rass}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2025

28-29 April 2025

  • Berlin, Germany

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org