The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2016.070114
PDF

Adaptive Neuro-Fuzzy Inference Systems for Modeling Greenhouse Climate

Author 1: Charaf eddine LACHOURI
Author 2: Khaled MANSOURI
Author 3: Mohamed mourad LAFIFI
Author 4: Aissa BELMEGUENAI

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 7 Issue 1, 2016.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The objective of this work was to solve the problem of non linear time variant multi-input multi-output of greenhouse internal climate for tomato seedlings. Artificial intelligent approaches including neural networks and fuzzy inference have been used widely to model expert behavior. In this paper we proposed the Adaptive Neuro-Fuzzy Inference Systems (ANFIS) as methodology to synthesize a robust greenhouse climate model for prediction of air temperature, air humidity, CO2 concentration and internal radiation during seedlings growth. A set of ten input meteorological and control actuators parameters that have a major impact on the greenhouse climate was chosen to represent the growing process of tomato plants. In this contribution we discussed the construction of an ANFIS system that seeks to provide a linguistic model for the estimation of greenhouse climate from the meteorological data and control actuators during 48 days of seedlings growth embedded in the trained neural network and optimized using the back propagation and the least square algorithm with 500 iterations. The simulation results have shown the efficiency of the proposed model.

Keywords: Greenhouse climate; Modeling; ANFIS; Neuro-Fuzzy

Charaf eddine LACHOURI, Khaled MANSOURI, Mohamed mourad LAFIFI and Aissa BELMEGUENAI, “Adaptive Neuro-Fuzzy Inference Systems for Modeling Greenhouse Climate” International Journal of Advanced Computer Science and Applications(IJACSA), 7(1), 2016. http://dx.doi.org/10.14569/IJACSA.2016.070114

@article{LACHOURI2016,
title = {Adaptive Neuro-Fuzzy Inference Systems for Modeling Greenhouse Climate},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2016.070114},
url = {http://dx.doi.org/10.14569/IJACSA.2016.070114},
year = {2016},
publisher = {The Science and Information Organization},
volume = {7},
number = {1},
author = {Charaf eddine LACHOURI and Khaled MANSOURI and Mohamed mourad LAFIFI and Aissa BELMEGUENAI}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org