The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2016.070125
PDF

Analysis of the SNR Estimator for Speech Enhancement Using a Cascaded Linear Model

Author 1: Harjeet Kaur
Author 2: Rajneesh Talwar

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 7 Issue 1, 2016.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Elimination of tainted noise and improving the overall quality of a speech signal is speech enhancement. To gain the advantage of individual algorithms we propose a new linear model and that is in the form of cascade adaptive filters for suppression of non-stationary noise. We have successfully deployed NLMS (Normalized Least Mean Square) algorithm, Sign LMS (Least Mean Square) and RLS (Recursive Least Square) as the main de-noising algorithms. Moreover, we are successful in demonstrating that the prior information about the noise is not required otherwise it would have been difficult to estimate for fast-varying noise in non-stationary environment. This approach estimates clean speech by recognizing the long segments of the clean speech as one whole unit. During experiment/implementation we used in-house database (includes various types of non stationary noise) for speech enhancement and proposed model results have shown improvement over conventional algorithms not only in objective but in subjective evaluations as well. Simulations present good results with a new linear model that are compared with individual algorithm results.

Keywords: Least Mean Square (LMS); Normalized Least Mean Square (NLMS); Recursive Least Square(RLS); Speech Enhancement; Non- stationary

Harjeet Kaur and Rajneesh Talwar, “Analysis of the SNR Estimator for Speech Enhancement Using a Cascaded Linear Model” International Journal of Advanced Computer Science and Applications(IJACSA), 7(1), 2016. http://dx.doi.org/10.14569/IJACSA.2016.070125

@article{Kaur2016,
title = {Analysis of the SNR Estimator for Speech Enhancement Using a Cascaded Linear Model},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2016.070125},
url = {http://dx.doi.org/10.14569/IJACSA.2016.070125},
year = {2016},
publisher = {The Science and Information Organization},
volume = {7},
number = {1},
author = {Harjeet Kaur and Rajneesh Talwar}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org