The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110750
PDF

A Method for Predicting Human Walking Patterns using Smartphone’s Accelerometer Sensor

Author 1: Zaid T. Alhalhouli

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 7, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Recently, the techniques for monitoring and recognizing human walking patterns have become one of the most important research topics, especially in health applications related to fitness and disease progression. This paper aims at combining machine learning techniques with Smartphone sensors readings (i.e. accelerometer sensor) in order to develop a smart model capable of classifying walking patterns into different categories (fast, normal, slow, very slow or very fast) along with variable of gender, male or female and sensor place, waist, hand or leg. In this paper, we use several machine learning algorithms including: Neural Network, KNN, Random forest, and Tree to train and test extracted data from Smartphone sensors. The results indicate that Smartphone sensor can be exploited in developing a reliable model for identifying the human walking patterns based on accelerometer readings. In addition, results show that Random forest is the best performing classifiers with an accuracy of (92.3%) and (91.8%) when applied on waist datasets for both males and females respectively.

Keywords: Smartphone’s; accelerometer sensor; walking patterns; machine learning classifiers

Zaid T. Alhalhouli, “A Method for Predicting Human Walking Patterns using Smartphone’s Accelerometer Sensor” International Journal of Advanced Computer Science and Applications(IJACSA), 11(7), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110750

@article{Alhalhouli2020,
title = {A Method for Predicting Human Walking Patterns using Smartphone’s Accelerometer Sensor},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110750},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110750},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {7},
author = {Zaid T. Alhalhouli}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org