The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Archives
  • Indexing

DOI: 10.14569/IJARAI.2012.010102
PDF

A Sparse Representation Method with Maximum Probability of Partial Ranking for Face Recognition

Author 1: Yi-Haur Shiau
Author 2: Chaur-Chin Chen

International Journal of Advanced Research in Artificial Intelligence(IJARAI), Volume 1 Issue 1, 2012.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Face recognition is a popular topic in computer vision applications. Compressive sensing is a novel sampling technique for finding sparse solutions to underdetermined linear systems. Recently, a sparse representation-based classification (SRC) method based on compressive sensing is presented. It has been successfully applied in face recognition. In this paper, we proposed a maximum probability of partial ranking method based on the framework of SRC, called SRC-MP, for face recognition. Eigenfiaces, fisherfaces, 2DPCA and 2DLDA are used for feature extraction. Experiments are implemented on two public face databases, Entended Yale B and ORL. In order to show our proposed method is robust for face recognition in the real world, experiment is also implemented on a web female album (WFA) face database. We utilize AdaBoost method to automatically detect human face from web album images with complex background, illumination variation and image misalignment to construct WFA database. Furthermore, we compare our proposed method with the classical projection-based methods such as principal component analysis (PCA), linear discriminant analysis (LDA), 2DPCA and 2DLDA. The experimental results demonstrate our proposed method not only is robust for varied viewing angles, expressions, and illumination, but also has higher recognition rates than other methods.

Keywords: Compressive sensing; Face recognition; Sparse representation classification; AdaBoost.

Yi-Haur Shiau and Chaur-Chin Chen, “A Sparse Representation Method with Maximum Probability of Partial Ranking for Face Recognition ” International Journal of Advanced Research in Artificial Intelligence(IJARAI), 1(1), 2012. http://dx.doi.org/10.14569/IJARAI.2012.010102

@article{Shiau2012,
title = {A Sparse Representation Method with Maximum Probability of Partial Ranking for Face Recognition },
journal = {International Journal of Advanced Research in Artificial Intelligence},
doi = {10.14569/IJARAI.2012.010102},
url = {http://dx.doi.org/10.14569/IJARAI.2012.010102},
year = {2012},
publisher = {The Science and Information Organization},
volume = {1},
number = {1},
author = {Yi-Haur Shiau and Chaur-Chin Chen}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org