The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Archives
  • Proposals

DOI: 10.14569/SpecialIssue.2011.010115
PDF

Automatic License Plate Localization Using Intrinsic Rules Saliency

Author 1: Chirag N Paunwala
Author 2: Dr. Suprava Patnaik

International Journal of Advanced Computer Science and Applications(IJACSA), Special Issue on Image Processing and Analysis, 2011.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: This paper addresses an intrinsic rule-based license plate localization (LPL) algorithm. It first selects candidate regions, and then filters negative regions with statistical constraints. Key contribution is assigning image inferred weights to the rules leading to adaptability in selecting saliency feature, which then overrules other features and the collective measure, decides the estimation. Saliency of rules is inherent to the frame under consideration hence all inevitable negative effects present in the frame are nullified, incorporating great deal of flexibility and more generalization. Situations considered for simulation, to claim that the algorithm is better generalized are, variations in illumination, skewness, aspect ratio and hence the LP font size, vehicle size, pose, partial occlusion of vehicles and presence of multiple plates. Proposed method allows parallel computation of rules, hence suitable for real time application. The mixed data set has 697 images of almost all varieties. We achieve a Miss Rate (MR) = 4% and False Detection Rate (FDR) = 5.95% in average. Also we have implemented skew correction of the above detected LPs necessary for efficient character detection.This paper addresses an intrinsic rule-based license plate localization (LPL) algorithm. It first selects candidate regions, and then filters negative regions with statistical constraints. Key contribution is assigning image inferred weights to the rules leading to adaptability in selecting saliency feature, which then overrules other features and the collective measure, decides the estimation. Saliency of rules is inherent to the frame under consideration hence all inevitable negative effects present in the frame are nullified, incorporating great deal of flexibility and more generalization. Situations considered for simulation, to claim that the algorithm is better generalized are, variations in illumination, skewness, aspect ratio and hence the LP font size, vehicle size, pose, partial occlusion of vehicles and presence of multiple plates. Proposed method allows parallel computation of rules, hence suitable for real time application. The mixed data set has 697 images of almost all varieties. We achieve a Miss Rate (MR) = 4% and False Detection Rate (FDR) = 5.95% in average. Also we have implemented skew correction of the above detected LPs necessary for efficient character detection.

Keywords: License plate localization; Salient rules; Connected Region Analysis; statistical inconsistency; skew correction.

Chirag N Paunwala and Dr. Suprava Patnaik, “Automatic License Plate Localization Using Intrinsic Rules Saliency” International Journal of Advanced Computer Science and Applications(IJACSA), Special Issue on Image Processing and Analysis, 2011. http://dx.doi.org/10.14569/SpecialIssue.2011.010115

@article{Paunwala2011,
title = {Automatic License Plate Localization Using Intrinsic Rules Saliency},
journal = {International Journal of Advanced Computer Science and Applications(IJACSA), Special Issue on Image Processing and Analysis}
doi = {10.14569/SpecialIssue.2011.010115},
url = {http://dx.doi.org/10.14569/SpecialIssue.2011.010115},
year = {2011},
publisher = {The Science and Information Organization},
volume = {1},
number = {1},
author = {Chirag N Paunwala and Dr. Suprava Patnaik},
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org