The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Archives
  • Proposals
  • Guest Editors

DOI: 10.14569/SpecialIssue.2011.010319
PDF

Mining Volunteered Geographic Information datasets with heterogeneous spatial reference

Author 1: Sadiq Hussain
Author 2: G.C. Hazarika

International Journal of Advanced Computer Science and Applications(IJACSA), Special Issue on Artificial Intelligence, 2011.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: When the information created online by users has a spatial reference, it is known as Volunteered Geographic Information (VGI). The increased availability of spatiotemporal data collected from satellite imagery and other remote sensors provides opportunities for enhanced analysis of Spatiotemporal Patterns. This area can be defined as efficiently discovering interesting patterns from large data sets. The discovery of hidden periodic patterns in spatiotemporal data could provide unveiling important information to the data analyst. In many applications that track and analyze spatiotemporal data, movements obey periodic patterns; the objects follow the same routes (approximately) over regular time intervals. However, these methods cannot directly be applied to a spatiotemporal sequence because of the fuzziness of spatial locations in the sequence. In this paper, we define the problem of mining VGI datasets with our already established bottom up algorithm for spatiotemporal data.

Keywords: data mining; periodic patterns; spatiotemporal data; Volunteered Geographic Information.

Sadiq Hussain and G.C. Hazarika, “Mining Volunteered Geographic Information datasets with heterogeneous spatial reference” International Journal of Advanced Computer Science and Applications(IJACSA), Special Issue on Artificial Intelligence, 2011. http://dx.doi.org/10.14569/SpecialIssue.2011.010319

@article{Hussain2011,
title = {Mining Volunteered Geographic Information datasets with heterogeneous spatial reference},
journal = {International Journal of Advanced Computer Science and Applications(IJACSA), Special Issue on Artificial Intelligence}
doi = {10.14569/SpecialIssue.2011.010319},
url = {http://dx.doi.org/10.14569/SpecialIssue.2011.010319},
year = {2011},
publisher = {The Science and Information Organization},
volume = {1},
number = {3},
author = {Sadiq Hussain and G.C. Hazarika},
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2024

4-5 April 2024

  • Berlin, Germany

Computing Conference 2024

11-12 July 2024

  • London, United Kingdom

IntelliSys 2024

5-6 September 2024

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org