The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Archives
  • Proposals

DOI: 10.14569/SpecialIssue.2011.010305
PDF

SOM Based Visualization Technique For Detection Of Cancerous Masses In Mammogram

Author 1: S.Pitchuman Angayarkanni M.C.A
Author 2: M.Phil
Author 3: V.Saravanan

International Journal of Advanced Computer Science and Applications(IJACSA), Special Issue on Artificial Intelligence, 2011.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Breast cancer is the most common form of cancer in women. An intelligent computer-aided diagnosis system can be very helpful for radiologist in detecting and diagnosing micro calcifications patterns earlier and faster than typical screening programs. In this paper, we present a system based on gabor filter based enhancement technique and feature extraction techniques using texture based segmentation and SOM(Self Organization Map) which is a form of Artificial Neural Network(ANN) used to analyze the texture features extracted. SOM determines which texture feature has the ability to classify benign, malignant and normal cases. Watershed segmentation technique is used to classify cancerous region from the non cancerous region. We have investigated and analyzed a number of feature extraction techniques and found that a combination of ten features, such as Cor-relation, Cluster Prominence, Energy, Entropy, Homogeneity, Difference variance, Difference Entropy, Information Measure, and Normalized are calculated. These features gives the distribution of tonality information and was found to be the best combination to distinguish a benign micro calcification pattern from one that is malignant and normal. The system was developed on a Windows platform. It is an easy to use intelligent system that gives the user options to diagnose, detect, enlarge, zoom, and measure distances of areas in digital mammograms. Further Using Linear Filtering Technique and the Texture Features as Mask are convolved with the segmented image .The tumor is detected using the above method and using watershed segmentation, a fair segmentation is obtained The artificial neural network with unsupervised learning together with texture based approach leads to the accuracy and positive predictive value of each algorithm were used as the evaluation indicators. 121 records acquired from the breast cancer patients at the MIAS database. The results revealed that the accuracies of texture based unsupervised learning has 0.9534 (sensitivity 0.98716 and specificity 0.9582 which was detected thorough the ROC. The results showed that the gabor based unsupervised learning described in the present study was able to produce accurate results in the classification of breast cancer data and the classification rule identified was more acceptable and comprehensible.

Keywords: Image Enhancement; Gabor Filter; Texture Features; SOM; ROC.

S.Pitchuman Angayarkanni M.C.A, M.Phil and V.Saravanan, “SOM Based Visualization Technique For Detection Of Cancerous Masses In Mammogram” International Journal of Advanced Computer Science and Applications(IJACSA), Special Issue on Artificial Intelligence, 2011. http://dx.doi.org/10.14569/SpecialIssue.2011.010305

@article{M.C.A2011,
title = {SOM Based Visualization Technique For Detection Of Cancerous Masses In Mammogram},
journal = {International Journal of Advanced Computer Science and Applications(IJACSA), Special Issue on Artificial Intelligence}
doi = {10.14569/SpecialIssue.2011.010305},
url = {http://dx.doi.org/10.14569/SpecialIssue.2011.010305},
year = {2011},
publisher = {The Science and Information Organization},
volume = {1},
number = {3},
author = {S.Pitchuman Angayarkanni M.C.A and M.Phil and V.Saravanan},
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org