The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Archives
  • Proposals

DOI: 10.14569/SpecialIssue.2011.010307
PDF

Unsupervised Method of Object Retrieval Using Similar Region Merging and Flood Fill

Author 1: Kanak Saxena
Author 2: Sanjeev Jain
Author 3: Uday Pratap Singh

International Journal of Advanced Computer Science and Applications(IJACSA), Special Issue on Artificial Intelligence, 2011.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In this work; we address a novel interactive framework for object retrieval using unsupervised similar region merging and flood fill method which models the spatial and appearance relations among image pixels. Efficient and effective image segmentation is usually very hard for natural and complex images. This paper presents a new technique for similar region merging and objects retrieval. The users only need to roughly indicate the after which steps desired objects boundary is obtained during merging of similar regions. A novel similarity based region merging mechanism is proposed to guide the merging process with the help of mean shift technique. A region R is merged with its adjacent regions Q if Q has highest similarity with R among all Q’s adjacent regions. The proposed method automatically merges the regions that are initially segmented through mean shift technique, and then effectively extracts the object contour by merging all similar regions. Extensive experiments are performed on 22 object classes (524 images total) show promising results.

Keywords: Image segmentationl; similar regions; region merging; mean shift; flood fill.

Kanak Saxena, Sanjeev Jain and Uday Pratap Singh, “Unsupervised Method of Object Retrieval Using Similar Region Merging and Flood Fill” International Journal of Advanced Computer Science and Applications(IJACSA), Special Issue on Artificial Intelligence, 2011. http://dx.doi.org/10.14569/SpecialIssue.2011.010307

@article{Saxena2011,
title = {Unsupervised Method of Object Retrieval Using Similar Region Merging and Flood Fill},
journal = {International Journal of Advanced Computer Science and Applications(IJACSA), Special Issue on Artificial Intelligence}
doi = {10.14569/SpecialIssue.2011.010307},
url = {http://dx.doi.org/10.14569/SpecialIssue.2011.010307},
year = {2011},
publisher = {The Science and Information Organization},
volume = {1},
number = {3},
author = {Kanak Saxena and Sanjeev Jain and Uday Pratap Singh},
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org