The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Call for Papers
  • Proposals
  • Guest Editors

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Decision Tree Classification of Remotely Sensed Satellite Data using Spectral Separability Matrix

Author 1: M K Ghose
Author 2: Ratika Pradhan
Author 3: Sucheta Sushan Ghose

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2010.010516

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 1 Issue 5, 2010.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In this paper an attempt has been made to develop a decision tree classification algorithm for remotely sensed satellite data using the separability matrix of the spectral distributions of probable classes in respective bands. The spectral distance between any two classes is calculated from the difference between the minimum spectral value of a class and maximum spectral value of its preceding class for a particular band. The decision tree is then constructed by recursively partitioning the spectral distribution in a Top-Down manner. Using the separability matrix, a threshold and a band will be chosen in order to partition the training set in an optimal manner. The classified image is compared with the image classified by using classical method Maximum Likelihood Classifier (MLC). The overall accuracy was found to be 98% using the Decision Tree method and 95% using the Maximum Likelihood method with kappa values 97% and 94 % respectively.

Keywords: Decision Tree Classifier (DTC), Separability Matrix, Maximum Likelihood Classifier (MLC), Stopping Criteria.

M K Ghose, Ratika Pradhan and Sucheta Sushan Ghose, “Decision Tree Classification of Remotely Sensed Satellite Data using Spectral Separability Matrix ” International Journal of Advanced Computer Science and Applications(IJACSA), 1(5), 2010. http://dx.doi.org/10.14569/IJACSA.2010.010516

@article{Ghose2010,
title = {Decision Tree Classification of Remotely Sensed Satellite Data using Spectral Separability Matrix },
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2010.010516},
url = {http://dx.doi.org/10.14569/IJACSA.2010.010516},
year = {2010},
publisher = {The Science and Information Organization},
volume = {1},
number = {5},
author = {M K Ghose and Ratika Pradhan and Sucheta Sushan Ghose}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2022

3-4 March 2022

  • Virtual

Computing Conference 2022

14-15 July 2022

  • Hybrid / London, UK

IntelliSys 2022

1-2 September 2022

  • Hybrid / Amsterdam

Future Technologies Conference (FTC) 2022

20-21 October 2022

  • Hybrid / Vancouver
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org