The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2010.010509
PDF

Pattern Discovery using Fuzzy FP-growth Algorithm from Gene Expression Data

Author 1: Sabita Barik
Author 2: Debahuti Mishra
Author 3: Shruti Mishra
Author 4: Sandeep Ku. Satapathy
Author 5: Amiya Ku. Rath
Author 6: Milu Acharya

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 1 Issue 5, 2010.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The goal of microarray experiments is to identify genes that are differentially transcribed with respect to different biological conditions of cell cultures and samples. Hence, method of data analysis needs to be carefully evaluated such as clustering, classification, prediction etc. In this paper, we have proposed an efficient frequent pattern based clustering to find the gene which forms frequent patterns showing similar phenotypes leading to specific symptoms for specific disease. In past, most of the approaches for finding frequent patterns were based on Apriori algorithm, which generates and tests candidate itemsets (gene sets) level by level. This processing causes iterative database (dataset) scans and high computational costs. Apriori algorithm also suffers from mapping the support and confidence framework to a crisp boundary. Our hybridized Fuzzy FP-growth approach not only outperforms the Apriori with respect to computational costs, but also it builds a tight tree structure to keep the membership values of fuzzy region to overcome the sharp boundary problem and it also takes care of scalability issues as the number of genes and condition increases.

Keywords: Gene Expression Data; Association Rule mining; Apriori Algorithm, Frequent Pattern Mining, FP-growth Algorithm

Sabita Barik, Debahuti Mishra, Shruti Mishra, Sandeep Ku. Satapathy, Amiya Ku. Rath and Milu Acharya, “Pattern Discovery using Fuzzy FP-growth Algorithm from Gene Expression Data ” International Journal of Advanced Computer Science and Applications(IJACSA), 1(5), 2010. http://dx.doi.org/10.14569/IJACSA.2010.010509

@article{Barik2010,
title = {Pattern Discovery using Fuzzy FP-growth Algorithm from Gene Expression Data },
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2010.010509},
url = {http://dx.doi.org/10.14569/IJACSA.2010.010509},
year = {2010},
publisher = {The Science and Information Organization},
volume = {1},
number = {5},
author = {Sabita Barik and Debahuti Mishra and Shruti Mishra and Sandeep Ku. Satapathy and Amiya Ku. Rath and Milu Acharya}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org