The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Archives
  • Indexing

DOI: 10.14569/IJARAI.2012.010501
PDF

A genetic algorithm approach for scheduling of resources in well-services companies

Author 1: Adrian Brezulianu
Author 2: Lucian Fira
Author 3: Monica Fira

International Journal of Advanced Research in Artificial Intelligence(IJARAI), Volume 1 Issue 5, 2012.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In this paper, two examples of resources scheduling in well-services companies are solved by means of genetic algorithms: resources for call solving, people scheduling. The results demonstrate that the genetic algorithm approach can provide acceptable solutions to this type of call solving for scheduling in well-services companies. The suggested approach could be easily extended to various resource scheduling areas: process scheduling, transportation scheduling.

Keywords: Genetic algorithm; optimization; well-services.

Adrian Brezulianu, Lucian Fira and Monica Fira, “A genetic algorithm approach for scheduling of resources in well-services companies” International Journal of Advanced Research in Artificial Intelligence(IJARAI), 1(5), 2012. http://dx.doi.org/10.14569/IJARAI.2012.010501

@article{Brezulianu2012,
title = {A genetic algorithm approach for scheduling of resources in well-services companies},
journal = {International Journal of Advanced Research in Artificial Intelligence},
doi = {10.14569/IJARAI.2012.010501},
url = {http://dx.doi.org/10.14569/IJARAI.2012.010501},
year = {2012},
publisher = {The Science and Information Organization},
volume = {1},
number = {5},
author = {Adrian Brezulianu and Lucian Fira and Monica Fira}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Computer Vision Conference (CVC) 2026

16-17 April 2026

  • Berlin, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org