The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2019.0100106
PDF

Ant Colony Optimization of Interval Type-2 Fuzzy C-Means with Subtractive Clustering and Multi-Round Sampling for Large Data

Author 1: Sana Qaiyum
Author 2: Izzatdin Aziz
Author 3: Jafreezal Jaafar
Author 4: Adam Kai Leung Wong

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 10 Issue 1, 2019.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Fuzzy C-Means (FCM) is widely accepted as a clustering technique. However, it cannot often manage different uncertainties associated with data. Interval Type-2 Fuzzy C-Means (IT2FCM) is an improvement over FCM since it can model and minimize the effect of uncertainty efficiently. However, IT2FCM for large data often gets trapped in local optima and fails to find optimal cluster centers. To overcome this challenge an Ant Colony-based Optimization (ACO) is proposed. Another challenge encountered is determining the number of clusters to perform clustering. Subtractive clustering (SC) is an efficient technique to estimate appropriate number of clusters. Though for large datasets the convergence rate of ACO and SC becomes high and thus, it becomes challenging to cluster data and evaluate correct number of clusters. To encounter the challenges of large dataset, Multi-Round Sampling (MRS) technique is proposed. IT2FCM-ACO with SC and MRS technique performs clustering on subsets of data and determines suitable cluster centers and cluster number. The obtained clusters are then extended to the entire dataset. This eliminates the need for IT2FCM to work on the complete dataset. Thus, the objective of this paper is to optimize IT2FCM using ACO algorithm and to estimate the optimal number of clusters using SC while employing MRS to handle the challenges of voluminous data. Results obtained from several clustering evaluation measures shows the improved performance of IT2FCM-ACO-MRS compared to ITFCM-ACO and IT2FCM. Speed up for different sample size of dataset is computed and is found that IT2FCM-ACO-MRS is ≈1–5 times faster than IT2FCM and IT2FCM-ACO for medium datasets whereas for large datasets it is reported to be ≈ 30–150 times faster.

Keywords: Interval type-2 fuzzy c-means; ant colony optimization; subtractive clustering; multi-round sampling

Sana Qaiyum, Izzatdin Aziz, Jafreezal Jaafar and Adam Kai Leung Wong, “Ant Colony Optimization of Interval Type-2 Fuzzy C-Means with Subtractive Clustering and Multi-Round Sampling for Large Data ” International Journal of Advanced Computer Science and Applications(IJACSA), 10(1), 2019. http://dx.doi.org/10.14569/IJACSA.2019.0100106

@article{Qaiyum2019,
title = {Ant Colony Optimization of Interval Type-2 Fuzzy C-Means with Subtractive Clustering and Multi-Round Sampling for Large Data },
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2019.0100106},
url = {http://dx.doi.org/10.14569/IJACSA.2019.0100106},
year = {2019},
publisher = {The Science and Information Organization},
volume = {10},
number = {1},
author = {Sana Qaiyum and Izzatdin Aziz and Jafreezal Jaafar and Adam Kai Leung Wong}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org