The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2019.0100164
PDF

Community Detection in Dynamic Social Networks: A Multi-Agent System based on Electric Field

Author 1: E. A Abdulkreem
Author 2: H. Zardi
Author 3: H. Karamti

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 10 Issue 1, 2019.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In recent years, several approaches have been proposed in order to detect communities in social networks. Most of them suffer from the recurrent problems: no detection of overlapping communities, exponential running time, no detection of all possible communities transformations, don’t consider the properties of social members, inability to deal with large scale networks, etc. Multi-agent systems are very suitable for modeling the phenomena in which various autonomous entities in inter-actions able to evolve in a dynamic environment. Considering the advantages of multi-agent simulations for social networks, in the present study, an incremental multi-agent system based on electric field is proposed. In this approach, a group of autonomous agents work together to discover the dynamic communities. Indeed, an agent is associated to each detected community. To update its community according to the dynamic of its members, each agent creates an electric field around it. It applies an attractive force to add very connected and similar members and neighboring communities. In the same time, it applies a repulsive force to reject some members and to get away from other communities. These forces are based on the structural and attributes similarity. To study the performance of this approach, set of different experiments is performed. The obtained results show the efficiency of the proposed model that was able to overcome all mentioned problems.

Keywords: Community detection; dynamic social networks; net-work evolution; multi-agent system; electric field; attractive force; repulsive force; attributes similarity; overlapping communities

E. A Abdulkreem, H. Zardi and H. Karamti, “Community Detection in Dynamic Social Networks: A Multi-Agent System based on Electric Field” International Journal of Advanced Computer Science and Applications(IJACSA), 10(1), 2019. http://dx.doi.org/10.14569/IJACSA.2019.0100164

@article{Abdulkreem2019,
title = {Community Detection in Dynamic Social Networks: A Multi-Agent System based on Electric Field},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2019.0100164},
url = {http://dx.doi.org/10.14569/IJACSA.2019.0100164},
year = {2019},
publisher = {The Science and Information Organization},
volume = {10},
number = {1},
author = {E. A Abdulkreem and H. Zardi and H. Karamti}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Computer Vision Conference (CVC) 2026

16-17 April 2026

  • Berlin, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org