The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2019.0101049
PDF

Model for Time Series Imputation based on Average of Historical Vectors, Fitting and Smoothing

Author 1: Anibal Flores
Author 2: Hugo Tito
Author 3: Deymor Centty

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 10 Issue 10, 2019.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: This paper presents a novel model for univariate time series imputation of meteorological data based on three algorithms: The first of them AHV (Average of Historical Vectors) estimates the set of NA values from historical vectors classified by seasonality; the second iNN (Interpolation to Nearest Neighbors) adjusts the curve predicted by AHV in such a way that it adequately fits to the prior and next value of the NAs gap; The third LANNf allows smoothing the curve interpolated by iNN in such a way that the accuracy of the predicted data can be improved. The results achieved by the model are very good, surpassing in several cases different algorithms with which it was compared.

Keywords: Univariate time series imputation; average of historical vectors; interpolation to nearest neighbors

Anibal Flores, Hugo Tito and Deymor Centty, “Model for Time Series Imputation based on Average of Historical Vectors, Fitting and Smoothing” International Journal of Advanced Computer Science and Applications(IJACSA), 10(10), 2019. http://dx.doi.org/10.14569/IJACSA.2019.0101049

@article{Flores2019,
title = {Model for Time Series Imputation based on Average of Historical Vectors, Fitting and Smoothing},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2019.0101049},
url = {http://dx.doi.org/10.14569/IJACSA.2019.0101049},
year = {2019},
publisher = {The Science and Information Organization},
volume = {10},
number = {10},
author = {Anibal Flores and Hugo Tito and Deymor Centty}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org