The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving
  • Editorial Board

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Computing Conference 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future of Information and Communication Conference (FICC) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

A Hybrid Model of Autoregressive Integrated Moving Average and Artificial Neural Network for Load Forecasting

Author 1: Lemuel Clark P Velasco
Author 2: Daisy Lou L. Polestico
Author 3: Gary Paolo O. Macasieb
Author 4: Michael Bryan V. Reyes
Author 5: Felicisimo B. Vasquez Jr

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2019.0101103

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 10 Issue 11, 2019.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The complementary strengths and weaknesses of both statistical modeling paired with machine learning has been an ongoing technique in the development and implementation of forecasting models that analyze the dataset’s linear as well as nonlinear components in the generation of accurate prediction results. In this paper, autoregressive integrated moving average (ARIMA) and artificial neural networks (ANN) were implemented as a hybrid forecasting model for a power utility’s dataset in order to predict the next day’s electric load consumption. ARIMA and ANN models were serially developed resulting to the findings that out of the twelve evaluated ARIMA models, ARIMA (8,1,2) exhibited the best forecasting performance. After identifying the optimal ANN layers and input neurons, this study showed that out of the six evaluated supervised feedforward ANN models, the ANN model which employed Hyperbolic Tangent activation function and Resilient Propagation training algorithm also exhibited the best forecasting performance. With Zhang’s ARIMA and ANN hybridization technique, this study showed that the hybrid model delivered Mean Absolute Percentage Error (MAPE) of 4.09% which is within the 5% internationally accepted forecasting error for electric load forecasting. Through the findings of this research, both the ARIMA statistical model and ANN machine learning approaches showed promising results in being implemented as a forecasting model pair to analyze the linear as well as non-linear properties of a power utility’s electric load data.

Keywords: Hybrid model; autoregressive integrated moving average; electric load forecasting; Artificial Neural Network (ANN)

Lemuel Clark P Velasco, Daisy Lou L. Polestico, Gary Paolo O. Macasieb, Michael Bryan V. Reyes and Felicisimo B. Vasquez Jr, “A Hybrid Model of Autoregressive Integrated Moving Average and Artificial Neural Network for Load Forecasting” International Journal of Advanced Computer Science and Applications(IJACSA), 10(11), 2019. http://dx.doi.org/10.14569/IJACSA.2019.0101103

@article{Velasco2019,
title = {A Hybrid Model of Autoregressive Integrated Moving Average and Artificial Neural Network for Load Forecasting},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2019.0101103},
url = {http://dx.doi.org/10.14569/IJACSA.2019.0101103},
year = {2019},
publisher = {The Science and Information Organization},
volume = {10},
number = {11},
author = {Lemuel Clark P Velasco and Daisy Lou L. Polestico and Gary Paolo O. Macasieb and Michael Bryan V. Reyes and Felicisimo B. Vasquez Jr}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2021

29-30 April 2021

  • Virtual

Computing Conference 2021

15-16 July 2021

  • London, United Kingdom

IntelliSys 2021

2-3 September 2021

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2021

28-29 October 2021

  • Vancouver, Canada
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© 2018 The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org