The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving
  • Editorial Board

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Computing Conference 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future of Information and Communication Conference (FICC) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Deep MRI Segmentation: A Convolutional Method Applied to Alzheimer Disease Detection

Author 1: Hanane Allioui
Author 2: Mohamed Sadgal
Author 3: Aziz Elfazziki

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2019.0101151

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 10 Issue 11, 2019.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The learning techniques have a particular need especially for the detection of invisible brain diseases. Learning-based methods rely on MRI medical images to reconstruct a solution for detecting aberrant values or areas in the human brain. In this article, we present a method that automatically performs segmentation of the brain to detect brain damage and diagnose Alzheimer's disease (AD). In order to take advantages of the benefits of 3D and reduce complexity and computational costs, we present a 2.5D method for locating brain inflammation and detecting their classes. Our proposed system is evaluated on a set of public data. Preliminary results indicate the reliability and effectiveness of our Alzheimer's Disease Detection System and demonstrate that our method is beyond current knowledge of Alzheimer's disease diagnosis.

Keywords: Computer-Assisted Diagnosis (CAD); Alzheimer's disease (AD); Image segmentation; Machine learning; Convolutional Neural Networks (CNN); Magnetic Resonance Imaging

Hanane Allioui, Mohamed Sadgal and Aziz Elfazziki, “Deep MRI Segmentation: A Convolutional Method Applied to Alzheimer Disease Detection” International Journal of Advanced Computer Science and Applications(IJACSA), 10(11), 2019. http://dx.doi.org/10.14569/IJACSA.2019.0101151

@article{Allioui2019,
title = {Deep MRI Segmentation: A Convolutional Method Applied to Alzheimer Disease Detection},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2019.0101151},
url = {http://dx.doi.org/10.14569/IJACSA.2019.0101151},
year = {2019},
publisher = {The Science and Information Organization},
volume = {10},
number = {11},
author = {Hanane Allioui and Mohamed Sadgal and Aziz Elfazziki}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2021

29-30 April 2021

  • Virtual

Computing Conference 2021

15-16 July 2021

  • London, United Kingdom

IntelliSys 2021

2-3 September 2021

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2021

28-29 October 2021

  • Vancouver, Canada
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© 2018 The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org