The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Indexing
  • Submit your Paper
  • Guidelines
  • Fees
  • Current Issue
  • Archives
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Local-Set Based-on Instance Selection Approach for Autonomous Object Modelling

Author 1: Joel Luis Carbonera
Author 2: Joanna Isabelle Olszewska

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2019.0101201

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 10 Issue 12, 2019.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: With the increasing presence of robotic agents in our daily life, computationally efficient modelling of real-world objects by autonomous systems is of prime importance for enabling these artificial agents to automatically and effectively perform tasks such as visual object recognition. For this purpose, we introduce a novel, machine-learning approach for instance selection called Approach for Selection of Border Instances (ASBI). This method adopts the notion of local sets to select the most representative instances at the boundaries of the classes, in order to reduce the set of training instances and, consequently, to reduce the computational resources that are necessary to perform the learning process of real-world objects by the artificial agents. Our new algorithm was validated on 27 standard datasets and applied on 2 challenging object-modelling datasets to test the automated object recognition task. ASBI performances were compared to those of 6 state-of-art algorithms, considering three standard metrics, namely, accuracy, reduction, and effectiveness. All the obtained results show that the proposed method is promising for the autonomous recognition task, while presenting the best trade-off between the classification accuracy and the data size reduction.

Keywords: Machine learning; instance selection; autonomous systems; object modelling; visual object recognition; computer vision; machine vision

Joel Luis Carbonera and Joanna Isabelle Olszewska, “Local-Set Based-on Instance Selection Approach for Autonomous Object Modelling” International Journal of Advanced Computer Science and Applications(IJACSA), 10(12), 2019. http://dx.doi.org/10.14569/IJACSA.2019.0101201

@article{Carbonera2019,
title = {Local-Set Based-on Instance Selection Approach for Autonomous Object Modelling},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2019.0101201},
url = {http://dx.doi.org/10.14569/IJACSA.2019.0101201},
year = {2019},
publisher = {The Science and Information Organization},
volume = {10},
number = {12},
author = {Joel Luis Carbonera and Joanna Isabelle Olszewska}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Virtual

Computing Conference 2023

22-23 June 2023

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org