The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2019.0101222
PDF

Scientific Text Sentiment Analysis using Machine Learning Techniques

Author 1: Hassan Raza
Author 2: M. Faizan
Author 3: Ahsan Hamza
Author 4: Ahmed Mushtaq
Author 5: Naeem Akhtar

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 10 Issue 12, 2019.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Over time, textual information on the World Wide Web (WWW) has increased exponentially, leading to potential research in the field of machine learning (ML) and natural language processing (NLP). Sentiment analysis of scientific domain articles is a very trendy and interesting topic nowadays. The main purpose of this research is to facilitate researchers to identify quality research papers based on their sentiment analysis. In this research, sentiment analysis of scientific articles using citation sentences is carried out using an existing constructed annotated corpus. This corpus is consisted of 8736 citation sentences. The noise was removed from data using different data normalization rules in order to clean the data corpus. To perform classification on this data set we developed a system in which six different machine learning algorithms including Naïve-Bayes (NB), Support Vector Machine (SVM), Logistic Regression (LR), Decision Tree (DT), K-Nearest Neighbor (KNN) and Random Forest (RF) are implemented. Then the accuracy of the system is evaluated using different evaluation metrics e.g. F-score and Accuracy score. To improve the system’ accuracy additional features selection techniques, such as lemmatization, n-graming, tokenization, and stop word removal are applied and found that our system provided significant performance in every case compared to the base system. Our method achieved a maximum of about 9% improved results as compared to the base system.

Keywords: Sentimental analysis; scientific citations; machine learning; scientific literature; classification

Hassan Raza, M. Faizan, Ahsan Hamza, Ahmed Mushtaq and Naeem Akhtar, “Scientific Text Sentiment Analysis using Machine Learning Techniques” International Journal of Advanced Computer Science and Applications(IJACSA), 10(12), 2019. http://dx.doi.org/10.14569/IJACSA.2019.0101222

@article{Raza2019,
title = {Scientific Text Sentiment Analysis using Machine Learning Techniques},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2019.0101222},
url = {http://dx.doi.org/10.14569/IJACSA.2019.0101222},
year = {2019},
publisher = {The Science and Information Organization},
volume = {10},
number = {12},
author = {Hassan Raza and M. Faizan and Ahsan Hamza and Ahmed Mushtaq and Naeem Akhtar}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org