The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computer Vision Conference (CVC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2019.0101253
PDF

GPLDA: A Generalized Poisson Latent Dirichlet Topic Model

Author 1: Ibrahim Bakari Bala
Author 2: Mohd Zainuri Saringat

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 10 Issue 12, 2019.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The earliest modification of Latent Dirichlet Allocation (LDA) in terms of words or document attributes is by relaxing its exchangeability assumption via the Bag-of-word (BoW) matrix. Several authors have proposed many modifications of the original LDA by focusing on model that assumes the current topic depends on the words from previous topic. Most of the earlier work ignored the document length distribution since it is assumed that it will fizzle out at the modelling stage. Thus, in this paper, the Poisson document length distribution of LDA model is replaced with Generalized Poisson (GP) distribution which has the strength of capturing complex structures. The main strengths of GP are in capturing overdispersed (variance larger than mean) and under dispersed (variance smaller than mean) count data. The Poisson distribution used by LDA strongly relies on the assumption that the mean and variance of document lengths are equal. This assumption is often unrealistic with most real-life text data where the variance of document length may be greater than or less than their mean. Approximate estimate of the GPLDA model parameters was achieved using Newton-Raphson approximation technique of log-likelihood. Performance and comparative analysis of GPLDA with LDA using accuracy and F1 showed improved results.

Keywords: Bag-of-word; generalized Poisson distribution; topic model; latent Dirichlet allocation

Ibrahim Bakari Bala and Mohd Zainuri Saringat, “GPLDA: A Generalized Poisson Latent Dirichlet Topic Model” International Journal of Advanced Computer Science and Applications(IJACSA), 10(12), 2019. http://dx.doi.org/10.14569/IJACSA.2019.0101253

@article{Bala2019,
title = {GPLDA: A Generalized Poisson Latent Dirichlet Topic Model},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2019.0101253},
url = {http://dx.doi.org/10.14569/IJACSA.2019.0101253},
year = {2019},
publisher = {The Science and Information Organization},
volume = {10},
number = {12},
author = {Ibrahim Bakari Bala and Mohd Zainuri Saringat}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Computer Vision Conference
  • Healthcare Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org