The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2019.0101268
PDF

Classification Performance of Violence Content by Deep Neural Network with Monarch Butterfly Optimization

Author 1: Ashikin Ali
Author 2: Norhalina Senan
Author 3: Iwan Tri Riyadi Yanto
Author 4: Saima Anwar Lashari

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 10 Issue 12, 2019.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Violence is self-sufficient, it is perplexing due to visibility of content dissimilarities among the positive instances that been displayed on media. Besides, the ever-increasing demand on internet, with various types of videos and genres, causes difficulty for a proper search of these videos to ensure the contents is humongous. It involves in aiding users to choose movies or web videos suitable for audience, in terms of classifying violence content. Nevertheless, this is a cumbersome job since the definition of violence is broad and subjective. Detecting such nuances from videos becomes technical without a human’s supervision that can lead to conceptual problem. Generally, violence classification is performed based on text, audio, and visual features; to be precise, it is more relevant to use of audio and visual base. However, from this perspective, deep neural network is the current build-up in machine learning approach to solve classification problems. In this research, audio and visual features are learned by the deep neural network for more specific violence content classification. This study has explored the implementation of deep neural network with monarch butterfly optimization (DNNMBO) to effectively perform the classification of the violence content in web videos. Hence, the experiments are conducted using YouTube videos from VSD2014 dataset that are publicly available by Technicolor group. The results are compared with similar modified approaches such as DNNPSO and the original DNN. The outcome has shown 94% of violence classification rate by DNNMBO.

Keywords: Deep learning; monarch butterfly; violence video; classification

Ashikin Ali, Norhalina Senan, Iwan Tri Riyadi Yanto and Saima Anwar Lashari, “Classification Performance of Violence Content by Deep Neural Network with Monarch Butterfly Optimization” International Journal of Advanced Computer Science and Applications(IJACSA), 10(12), 2019. http://dx.doi.org/10.14569/IJACSA.2019.0101268

@article{Ali2019,
title = {Classification Performance of Violence Content by Deep Neural Network with Monarch Butterfly Optimization},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2019.0101268},
url = {http://dx.doi.org/10.14569/IJACSA.2019.0101268},
year = {2019},
publisher = {The Science and Information Organization},
volume = {10},
number = {12},
author = {Ashikin Ali and Norhalina Senan and Iwan Tri Riyadi Yanto and Saima Anwar Lashari}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Computer Vision Conference (CVC) 2026

16-17 April 2026

  • Berlin, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org