The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2019.0101289
PDF

High Predictive Performance of Dynamic Neural Network Models for Forecasting Financial Time Series

Author 1: Haya Alaskar

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 10 Issue 12, 2019.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The study presents high predictive performance of dynamic neural network models for noisy time series data; explicitly, forecasting the financial time series from the stock market. Several dynamic neural networks with different architecture models are implemented for forecasting stock market prices and oil prices. A comparative analysis of eight architectures of dynamic neural network models was carried out and presented. The study has explained the techniques used in the study involving the processing of data, management of noisy data, and transformations stationary time series. Experimental testing used in this work includes mean square error, and mean absolute percentage error to evaluate forecast accuracy. The results depicted that the different structures of the dynamic neural network models can be successfully used for the prediction of nonstationary financial signals, which is considered very challenging since the signals suffer from noise and volatility. The nonlinear autoregressive neural network with exogenous inputs (NARX) does considerably better than other network models as the accuracy of the comparative evaluation achieves a better performance in terms of profit return. In non-stationary signals, Long short term memory results are considered the best on mean square error, and mean absolute percentage error.

Keywords: Dynamic neural network; financial time series; prediction stock market; financial forecasting; deep learning-based technique

Haya Alaskar, “High Predictive Performance of Dynamic Neural Network Models for Forecasting Financial Time Series” International Journal of Advanced Computer Science and Applications(IJACSA), 10(12), 2019. http://dx.doi.org/10.14569/IJACSA.2019.0101289

@article{Alaskar2019,
title = {High Predictive Performance of Dynamic Neural Network Models for Forecasting Financial Time Series},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2019.0101289},
url = {http://dx.doi.org/10.14569/IJACSA.2019.0101289},
year = {2019},
publisher = {The Science and Information Organization},
volume = {10},
number = {12},
author = {Haya Alaskar}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org