The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Call for Papers
  • Proposals
  • Guest Editors

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

High Predictive Performance of Dynamic Neural Network Models for Forecasting Financial Time Series

Author 1: Haya Alaskar

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2019.0101289

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 10 Issue 12, 2019.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The study presents high predictive performance of dynamic neural network models for noisy time series data; explicitly, forecasting the financial time series from the stock market. Several dynamic neural networks with different architecture models are implemented for forecasting stock market prices and oil prices. A comparative analysis of eight architectures of dynamic neural network models was carried out and presented. The study has explained the techniques used in the study involving the processing of data, management of noisy data, and transformations stationary time series. Experimental testing used in this work includes mean square error, and mean absolute percentage error to evaluate forecast accuracy. The results depicted that the different structures of the dynamic neural network models can be successfully used for the prediction of nonstationary financial signals, which is considered very challenging since the signals suffer from noise and volatility. The nonlinear autoregressive neural network with exogenous inputs (NARX) does considerably better than other network models as the accuracy of the comparative evaluation achieves a better performance in terms of profit return. In non-stationary signals, Long short term memory results are considered the best on mean square error, and mean absolute percentage error.

Keywords: Dynamic neural network; financial time series; prediction stock market; financial forecasting; deep learning-based technique

Haya Alaskar, “High Predictive Performance of Dynamic Neural Network Models for Forecasting Financial Time Series” International Journal of Advanced Computer Science and Applications(IJACSA), 10(12), 2019. http://dx.doi.org/10.14569/IJACSA.2019.0101289

@article{Alaskar2019,
title = {High Predictive Performance of Dynamic Neural Network Models for Forecasting Financial Time Series},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2019.0101289},
url = {http://dx.doi.org/10.14569/IJACSA.2019.0101289},
year = {2019},
publisher = {The Science and Information Organization},
volume = {10},
number = {12},
author = {Haya Alaskar}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2022

3-4 March 2022

  • Virtual

Computing Conference 2022

14-15 July 2022

  • Hybrid / London, UK

IntelliSys 2022

1-2 September 2022

  • Hybrid / Amsterdam

Future Technologies Conference (FTC) 2022

20-21 October 2022

  • Hybrid / Vancouver
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org