The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2019.0100230
PDF

MINN: A Missing Data Imputation Technique for Analogy-based Effort Estimation

Author 1: Muhammad Arif Shah
Author 2: Dayang N. A. Jawawi
Author 3: Mohd Adham Isa
Author 4: Karzan Wakil
Author 5: Muhammad Younas
Author 6: Ahmed Mustafa

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 10 Issue 2, 2019.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Success and failure of a complex software project are strongly associated with the accurate estimation of development effort. There are numerous estimation models developed but the most widely used among those is Analogy-Based Estimation (ABE). ABE model follows human nature as it estimates the future project’s effort by making analogies with the past project's data. Since ABE relies on the historical datasets, the quality of the datasets affects the accuracy of estimation. Most of the software engineering datasets have missing values. The researchers either delete the projects containing missing values or avoid treating the missing values which reduce the ABE performance. In this study, Numeric Cleansing (NC), K-Nearest Neighbor Imputation (KNNI) and Median Imputation of the Nearest Neighbor (MINN) methods are used to impute the missing values in Desharnais and DesMiss datasets for ABE. MINN technique is introduced in this study. A comparison among these imputation methods is performed to identify the suitable missing data imputation method for ABE. The results suggested that MINN imputes more realistic values in the missing datasets as compared to values imputed through NC and KNNI. It was also found that the imputation treatment method helped in better prediction of the software development effort on ABE model.

Keywords: Analogy-based estimation; effort estimation; missing data imputation; software development

Muhammad Arif Shah, Dayang N. A. Jawawi, Mohd Adham Isa, Karzan Wakil, Muhammad Younas and Ahmed Mustafa, “MINN: A Missing Data Imputation Technique for Analogy-based Effort Estimation” International Journal of Advanced Computer Science and Applications(IJACSA), 10(2), 2019. http://dx.doi.org/10.14569/IJACSA.2019.0100230

@article{Shah2019,
title = {MINN: A Missing Data Imputation Technique for Analogy-based Effort Estimation},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2019.0100230},
url = {http://dx.doi.org/10.14569/IJACSA.2019.0100230},
year = {2019},
publisher = {The Science and Information Organization},
volume = {10},
number = {2},
author = {Muhammad Arif Shah and Dayang N. A. Jawawi and Mohd Adham Isa and Karzan Wakil and Muhammad Younas and Ahmed Mustafa}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org