The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computer Vision Conference (CVC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2019.0100250
PDF

Breast Cancer Classification using Global Discriminate Features in Mammographic Images

Author 1: Nadeem Tariq
Author 2: Beenish Abid
Author 3: Khawaja Ali Qadeer
Author 4: Imran Hashim
Author 5: Zulfiqar Ali
Author 6: Ikramullah Khosa

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 10 Issue 2, 2019.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Breast cancer has become a rapidly prevailing disease among women all over the world. In term of mortality, it is considered to be the second leading cause of death. Death risk can be reduced by early stage detection, followed by a suitable treatment procedure. Contemporary literature shows that mammographic imaging is widely used for premature discovery of breast cancer. In this paper, we propose an efficient Computer Aided Diagnostic (CAD) system for the detection of breast cancer using mammography images. The CAD system extracts largely discriminating features on the global level for representation of target categories in two sets: all 20 extracted features and top 7 ranked features among them. Texture characteristics using co-occurrence matrices are calculated via the single offset vector. Multilayer perceptron neural network with optimized architecture is fed with individual feature sets and results are produced. Data division corresponds as 60%, 20%, and 20% is used for training, cross-validation, and test purposes, respectively. Robust results are achieved and presented after rotating the data up to five times, which shows higher than 99% accuracy for both target categories, and hence outperform the existing solutions.

Keywords: Breast cancer; mammography; pattern recognition; classification

Nadeem Tariq, Beenish Abid, Khawaja Ali Qadeer, Imran Hashim, Zulfiqar Ali and Ikramullah Khosa, “Breast Cancer Classification using Global Discriminate Features in Mammographic Images” International Journal of Advanced Computer Science and Applications(IJACSA), 10(2), 2019. http://dx.doi.org/10.14569/IJACSA.2019.0100250

@article{Tariq2019,
title = {Breast Cancer Classification using Global Discriminate Features in Mammographic Images},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2019.0100250},
url = {http://dx.doi.org/10.14569/IJACSA.2019.0100250},
year = {2019},
publisher = {The Science and Information Organization},
volume = {10},
number = {2},
author = {Nadeem Tariq and Beenish Abid and Khawaja Ali Qadeer and Imran Hashim and Zulfiqar Ali and Ikramullah Khosa}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Computer Vision Conference
  • Healthcare Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org