The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2019.0100320
PDF

Opinion Mining: An Approach to Feature Engineering

Author 1: Shafaq Siddiqui
Author 2: M. Abdul Rehman
Author 3: Sher M. Daudpota
Author 4: Ahmad Waqas

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 10 Issue 3, 2019.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Sentiment Analysis or opinion mining refers to a process of identifying and categorizing the subjective information in source materials using natural language processing (NLP), text analytics and statistical linguistics. The main purpose of opinion mining is to determine the writer’s attitude towards a particular topic under discussion. This is done by identifying a polarity of a particular text paragraph using different feature sets. Feature engineering in pre-processing phase plays a vital role in improving the performance of a classifier. In this paper we empirically evaluated various features weighting mechanisms against the well-established classification techniques for opinion mining, i.e. Naive Bayes-Multinomial for binary polarity cases and SVM-LIN for multiclass cases. In order to evaluates these classification techniques we use Rotten Tomatoes publically available movie reviews dataset for training the classifiers as this is widely used dataset by research community for the same purpose. The empirical experiment concludes that the feature set containing noun, verb, adverb and adjective lemmas with feature-frequency (FF) function perform better among all other feature settings with 84% and 85% correctly classified test instances for Naïve Bayes and SVM, respectively.

Keywords: Opinion mining; feature engineering; machine learning; classification; natural language processing

Shafaq Siddiqui, M. Abdul Rehman, Sher M. Daudpota and Ahmad Waqas, “Opinion Mining: An Approach to Feature Engineering” International Journal of Advanced Computer Science and Applications(IJACSA), 10(3), 2019. http://dx.doi.org/10.14569/IJACSA.2019.0100320

@article{Siddiqui2019,
title = {Opinion Mining: An Approach to Feature Engineering},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2019.0100320},
url = {http://dx.doi.org/10.14569/IJACSA.2019.0100320},
year = {2019},
publisher = {The Science and Information Organization},
volume = {10},
number = {3},
author = {Shafaq Siddiqui and M. Abdul Rehman and Sher M. Daudpota and Ahmad Waqas}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org