The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2019.0100360
PDF

Improvement in Classification Algorithms through Model Stacking with the Consideration of their Correlation

Author 1: Muhammad Azam
Author 2: Dr. Tanvir Ahmed
Author 3: Dr. M. Usman Hashmi
Author 4: Rehan Ahmad
Author 5: Abdul Manan
Author 6: Muhammad Adrees
Author 7: Fahad Sabah

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 10 Issue 3, 2019.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In this research we analyzed the performance of some well-known classification algorithms in terms of their accuracy and proposed a methodology for model stacking on the basis of their correlation which improves the accuracy of these algorithms. We selected; Support Vector Machines (svm), Naïve Bayes (nb), k-Nearest Neighbors (knn), Generalized Linear Model (glm), Latent Discriminant Analysis (lda), gbm, Recursive Partitioning and Regression Trees (rpart), rda, Neural Networks (nnet) and Conditional Inference Trees (ctree) in our research and preformed analyses on three textual datasets of different sizes; Scopus 50,000 instances, IMDB Movie Reviews having 10,000 instances, Amazon Products Reviews having 1000 instances and Yelp dataset having 1000 instances. We used R-Studio for performing experiments. Results show that the performance of all algorithms increased at Meta level. Neural Networks achieved the best results with more than 25% improvement at Meta-Level and outperformed the other evaluated methods with an accuracy of 95.66%, and altogether our model gives far better results than individual algorithms’ performance.

Keywords: Classification algorithms; model stacking; correlation; k-nearest neighbor; pre-processing; meta classifiers

Muhammad Azam, Dr. Tanvir Ahmed, Dr. M. Usman Hashmi, Rehan Ahmad, Abdul Manan, Muhammad Adrees and Fahad Sabah, “Improvement in Classification Algorithms through Model Stacking with the Consideration of their Correlation” International Journal of Advanced Computer Science and Applications(IJACSA), 10(3), 2019. http://dx.doi.org/10.14569/IJACSA.2019.0100360

@article{Azam2019,
title = {Improvement in Classification Algorithms through Model Stacking with the Consideration of their Correlation},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2019.0100360},
url = {http://dx.doi.org/10.14569/IJACSA.2019.0100360},
year = {2019},
publisher = {The Science and Information Organization},
volume = {10},
number = {3},
author = {Muhammad Azam and Dr. Tanvir Ahmed and Dr. M. Usman Hashmi and Rehan Ahmad and Abdul Manan and Muhammad Adrees and Fahad Sabah}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org