The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2019.0100362
PDF

An Improved Particle Swarm Optimization Algorithm with Chi-Square Mutation Strategy

Author 1: Waqas Haider Bangyal
Author 2: Hafiz Tayyab Rauf
Author 3: Hafsa Batool
Author 4: Saad Abdullah Bangyal
Author 5: Jamil Ahmed
Author 6: Sobia Pervaiz

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 10 Issue 3, 2019.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Particle Swarm Optimization (PSO) algorithm is a population-based strong stochastic search strategy empowered from the inherent way of the bee swarm or animal herds for seeking their foods. Consequently, flexibility for the numerical experimentation, PSO has been used to resolve diverse kind of optimization problems. PSO is much of the time caught in local optima in the meantime taking care of the complex real-world problems.Considering this, a novel modified PSO is introduced by proposing a chi square mutation method. The main functionality of mutation operator in PSO is quick convergence and escapes from the local minima. Population initialization plays a critical role in meta-heuristic algorithm. Moreover, in this work, to improve the convergence, rather applying random distribution for initialization, two quasi random sequences Halton and Sobol have been applied and properly joined with chi-square mutated PSO (Chi-Square PSO) algorithm. The promising experimental result suggests the superiority of the proposed technique. The results present foresight that how the proposed mutation operator influences on the value of cost function and divergence. The proposed mutated strategy is applied for eight (8) benchmark functions extensively used in the literature. The simulation results verify that Chi-Square PSO provide efficient results over other tested algorithms implemented for the function optimization.

Keywords: Particle Swarm Optimization; Chi-Square Mutation; Population Initialization

Waqas Haider Bangyal, Hafiz Tayyab Rauf, Hafsa Batool, Saad Abdullah Bangyal, Jamil Ahmed and Sobia Pervaiz, “An Improved Particle Swarm Optimization Algorithm with Chi-Square Mutation Strategy” International Journal of Advanced Computer Science and Applications(IJACSA), 10(3), 2019. http://dx.doi.org/10.14569/IJACSA.2019.0100362

@article{Bangyal2019,
title = {An Improved Particle Swarm Optimization Algorithm with Chi-Square Mutation Strategy},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2019.0100362},
url = {http://dx.doi.org/10.14569/IJACSA.2019.0100362},
year = {2019},
publisher = {The Science and Information Organization},
volume = {10},
number = {3},
author = {Waqas Haider Bangyal and Hafiz Tayyab Rauf and Hafsa Batool and Saad Abdullah Bangyal and Jamil Ahmed and Sobia Pervaiz}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org