The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2019.0100374
PDF

Performance Analysis of Multilayer Perceptron Neural Network Models in Week-Ahead Rainfall Forecasting

Author 1: Lemuel Clark P. Velasco
Author 2: Ruth P. Serquiña
Author 3: Mohammad Shahin A. Abdul Zamad
Author 4: Bryan F. Juanico
Author 5: Junneil C. Lomocso

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 10 Issue 3, 2019.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Multilayer perceptron neural network (MLPNN) is considered as one of the most efficient forecasting techniques which can be implemented for the prediction of weather occurrence. As with any machine learning implementation, the challenge on the utilization of MLPNN in rainfall forecasting lies in the development and evaluation of MLPNN models which delivers optimal forecasting performance. This research conducted performance analysis of MLPNN models through data preparation, model designing, and model evaluation in order to determine which parameters are the best-fit configurations for MLPNN model implementation in rainfall forecasting. During rainfall data preparation, imputation process and spatial correlation evaluation of weather variables from various weather stations showed that the geographical location of the chosen weather stations did not have a direct correlation between stations with respect to rainfall behavior leading to the decision of utilizing the weather station having the most complete weather data to be fed in the MLPNN. By conducting performance analysis of MLPNN models with different combinations of training algorithms, activation functions, learning rate, and momentum, it was found out that MLPNN model having 100 hidden neurons with Scaled Conjugate Gradient training algorithm and Sigmoid activation function delivered the lowest RMSE of 0.031537 while another MLPNN model having the same number of hidden neurons, the same activation function but Resilient Propagation as training algorithm had the lowest MAE of 0.0209. The results of this research showed that performance analysis of MLPNN models is a crucial process in model implementation of MLPNN for week-ahead rainfall forecasting.

Keywords: Multilayer perceptron neural network; performance analysis; rainfall forecasting

Lemuel Clark P. Velasco, Ruth P. Serquiña, Mohammad Shahin A. Abdul Zamad, Bryan F. Juanico and Junneil C. Lomocso, “Performance Analysis of Multilayer Perceptron Neural Network Models in Week-Ahead Rainfall Forecasting” International Journal of Advanced Computer Science and Applications(IJACSA), 10(3), 2019. http://dx.doi.org/10.14569/IJACSA.2019.0100374

@article{Velasco2019,
title = {Performance Analysis of Multilayer Perceptron Neural Network Models in Week-Ahead Rainfall Forecasting},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2019.0100374},
url = {http://dx.doi.org/10.14569/IJACSA.2019.0100374},
year = {2019},
publisher = {The Science and Information Organization},
volume = {10},
number = {3},
author = {Lemuel Clark P. Velasco and Ruth P. Serquiña and Mohammad Shahin A. Abdul Zamad and Bryan F. Juanico and Junneil C. Lomocso}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org