The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2019.0100440
PDF

Intrusion-Miner: A Hybrid Classifier for Intrusion Detection using Data Mining

Author 1: Samra Zafar
Author 2: Muhammad.Kamran
Author 3: Xiaopeng.Hu

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 10 Issue 4, 2019.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: With the rapid growth and usage of internet, number of network attacks have increase dramatically within the past few years. The problem facing in nowadays is to observe these attacks efficiently for security concerns because of the value of data. Consequently, it is important to monitor and handle these attacks and intrusion detection system (IDS) has potentially diagnostic ability to handle these attacks to secure the network. Numerous intrusion detection approaches are presented but the main hindrance is their performance which can be improved by increasing detection rate as well as decreasing false positive rates. Optimizing the performance of IDS is very serious issue and challenging fact that gets more attention from the research community. In this paper, we proposed a hybrid classification approach ‘Intrusion-Miner’ with the help of two classifier algorithm for network anomaly detection to get optimum result and make it possible to detect network attacks. Thus, principal component analysis (PCA) and Fisher Discriminant Ratio (FDR) have been implemented for the feature selection and noise removal. This hybrid approach is compared with J48, Bayesnet, JRip, SMO, IBK and evaluate the performance using KDD99 dataset. Experimental result revealed that the precision of the proposed approach is measured as 96.1 % with low false positive and high false negative rate as compare to other state-of-the-art algorithm. The simulation result evaluation shows that perceptible progress and real-time intrusion detection can be attained as we apply the suggested models to identify diverse kinds of network attacks.

Keywords: Intrusion detection system; principal component analysis; intrusion-minor; fisher discriminant ratio

Samra Zafar, Muhammad.Kamran and Xiaopeng.Hu, “Intrusion-Miner: A Hybrid Classifier for Intrusion Detection using Data Mining” International Journal of Advanced Computer Science and Applications(IJACSA), 10(4), 2019. http://dx.doi.org/10.14569/IJACSA.2019.0100440

@article{Zafar2019,
title = {Intrusion-Miner: A Hybrid Classifier for Intrusion Detection using Data Mining},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2019.0100440},
url = {http://dx.doi.org/10.14569/IJACSA.2019.0100440},
year = {2019},
publisher = {The Science and Information Organization},
volume = {10},
number = {4},
author = {Samra Zafar and Muhammad.Kamran and Xiaopeng.Hu}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Computer Vision Conference (CVC) 2026

16-17 April 2026

  • Berlin, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org