The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2019.0100441
PDF

Gene Optimized Deep Neural Round Robin Workflow Scheduling in Cloud

Author 1: Shanmugasundaram M
Author 2: Kumar R
Author 3: Kittur H M

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 10 Issue 4, 2019.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Workflow scheduling is a key problem to be solved in the cloud to increases the quality of services. Few research works have been designed for performing workflow scheduling using different techniques. But, scheduling performance of existing techniques was not effective when considering a larger number of user tasks. Besides, the makespan of workflow scheduling was higher. In order to solve such limitations, Gene Optimized Deep Neural Round Robin Scheduling (GODNRRS) Technique is proposed. The designed GODNRRS Technique contains three layers namely input, hidden and output layer to efficiently perform workflow scheduling in the cloud. The GODNRRS Technique initially gets the number of user tasks as input in the input layer and forwards it to the hidden layer. After taking input, GODNRRS Technique initializes gene population with the assist of virtual machines in Amazon cloud server at the first hidden layer. Next, GODNRRS Technique determines fitness function for each virtual machine using their energy, memory, CPU time, bandwidth capacity at the second hidden layer. Afterward, GODNRRS Technique defines a weight for each virtual machine at the third hidden layer depends on their fitness function estimation. Consequently, GODNRRS Technique distributes the user tasks to optimal virtual machines according to their weight value at the fourth hidden layer in a cyclic manner. At last, the output layer renders the scheduled tasks result. Thus, GODNRRS Technique handles workflows in the cloud with improved scheduling efficiency and lower energy and makespan. The GODNRRS Technique conduct the experimental evaluation using metrics such as scheduling efficiency, makespan, and energy consumption with respect to a different number of user tasks from LIGO , Montage and cybershake real-time applications. The experimental result show that the GODNRRS Technique is able to increases the efficiency and also reduces the makespan of workflows scheduling in the cloud as compared to state-of-the-art works.

Keywords: Bandwidth capacity; processor time; energy; fitness function; memory; user task; virtual machine

Shanmugasundaram M, Kumar R and Kittur H M, “Gene Optimized Deep Neural Round Robin Workflow Scheduling in Cloud” International Journal of Advanced Computer Science and Applications(IJACSA), 10(4), 2019. http://dx.doi.org/10.14569/IJACSA.2019.0100441

@article{M2019,
title = {Gene Optimized Deep Neural Round Robin Workflow Scheduling in Cloud},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2019.0100441},
url = {http://dx.doi.org/10.14569/IJACSA.2019.0100441},
year = {2019},
publisher = {The Science and Information Organization},
volume = {10},
number = {4},
author = {Shanmugasundaram M and Kumar R and Kittur H M}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2025

28-29 April 2025

  • Berlin, Germany

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org