The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2019.0100552
PDF

Accuracy Performance Degradation in Image Classification Models due to Concept Drift

Author 1: Manzoor Ahmed Hashmani
Author 2: Syed Muslim Jameel
Author 3: Hitham Alhussain
Author 4: Mobashar Rehman
Author 5: Arif Budiman

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 10 Issue 5, 2019.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Big data is playing a significant role in the current computing revolution. Industries and organizations are utilizing their insights for Business Intelligence by using Deep Learning Networks (DLN). However, dynamic characteristics of BD introduce many critical issues for DLN; Concept Drift (CD) is one of them. CD issue appears frequently in Online Supervised Learning environments in which data trends change over time. The problem may even worsen in a BD environment due to the veracity and variability factors. The CD issue may render the DLN inapplicable by degrading the accuracy of classification results in DLN which is a very serious issue that needs to be addressed. Therefore, these DLN need to quickly adapt to changes for maintaining the accuracy level of the results. To overcome classification accuracy, we need some dynamical changes in the existing DLN. Therefore, in this paper, we examine some of the existing Shallow Learning and Deep Learning models and their behavior before and after the Concept Drift (in experiment 1) and validate the pre-trained Deep Learning network (ResNet-50). In future work, this experiment will examine the most recent pre-trained DLN (Alex Net, VGG16, VGG19) and identify their suitability to overcome Concept Drift using fine-tuning and transfer learning approaches.

Keywords: Pre-trained networks; deep learning; concept drift; fine tuning; transfer learning

Manzoor Ahmed Hashmani, Syed Muslim Jameel, Hitham Alhussain, Mobashar Rehman and Arif Budiman, “Accuracy Performance Degradation in Image Classification Models due to Concept Drift” International Journal of Advanced Computer Science and Applications(IJACSA), 10(5), 2019. http://dx.doi.org/10.14569/IJACSA.2019.0100552

@article{Hashmani2019,
title = {Accuracy Performance Degradation in Image Classification Models due to Concept Drift},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2019.0100552},
url = {http://dx.doi.org/10.14569/IJACSA.2019.0100552},
year = {2019},
publisher = {The Science and Information Organization},
volume = {10},
number = {5},
author = {Manzoor Ahmed Hashmani and Syed Muslim Jameel and Hitham Alhussain and Mobashar Rehman and Arif Budiman}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org