The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2019.0100562
PDF

Four-Class Motor Imagery EEG Signal Classification using PCA, Wavelet and Two-Stage Neural Network

Author 1: Md. Asadur Rahman
Author 2: Farzana Khanam
Author 3: Md. Kazem Hossain
Author 4: Mohammad Khurshed Alam
Author 5: Mohiuddin Ahmad

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 10 Issue 5, 2019.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Electroencephalogram (EEG) is the most significant signal for brain-computer interfaces (BCI). Nowadays, motor imagery (MI) movement based BCI is highly accepted method for. This paper proposes a novel method based on the combined utilization of principal component analysis (PCA), wavelet packet transformation (WPT), and two-stage machine learning algorithm to classify four-class MI EEG signal. This work includes four-class MI events by an imaginary lifting of the left hand, right hand, left foot, and Right Foot. The main challenge of this work is to discriminate the similar lobe EEG signal pattern such as left foot VS left hand. Another critical problem is to identify the MI movements of two different feet because their activation level is very low and show an almost similar pattern. This work firstly uses the PCA to reduce the signal dimensions of the left and right lobe of the brain. Then, WPT is used to extract the feature from the different class EEG signal. Finally, the artificial neural network is trained into two stages – 1st stage identifies the lobe from the signal pattern and the 2nd stage identifies whether the signal is of MI hand or MI foot movement. The proposed method is applied to the 4-class MI movement related EEG signals of 15 participants and found excellent classification accuracy (>74% on average). The outcomes of the proposed method prove its effectiveness in practical BCI implementation.

Keywords: Brain-computer interface; electroencephalogram; motor imagery; principal component analysis; wavelet packet transformation; artificial neural network; classification

Md. Asadur Rahman, Farzana Khanam, Md. Kazem Hossain, Mohammad Khurshed Alam and Mohiuddin Ahmad, “Four-Class Motor Imagery EEG Signal Classification using PCA, Wavelet and Two-Stage Neural Network” International Journal of Advanced Computer Science and Applications(IJACSA), 10(5), 2019. http://dx.doi.org/10.14569/IJACSA.2019.0100562

@article{Rahman2019,
title = {Four-Class Motor Imagery EEG Signal Classification using PCA, Wavelet and Two-Stage Neural Network},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2019.0100562},
url = {http://dx.doi.org/10.14569/IJACSA.2019.0100562},
year = {2019},
publisher = {The Science and Information Organization},
volume = {10},
number = {5},
author = {Md. Asadur Rahman and Farzana Khanam and Md. Kazem Hossain and Mohammad Khurshed Alam and Mohiuddin Ahmad}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org