The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving
  • Editorial Board

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Computing Conference 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future of Information and Communication Conference (FICC) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Alerts Clustering for Intrusion Detection Systems: Overview and Machine Learning Perspectives

Author 1: Wajdi Alhakami

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2019.0100574

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 10 Issue 5, 2019.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The tremendous amount of the security alerts due to the high-speed alert generation of high-speed networks make the management of intrusion detection computationally expensive. Evidently, the high-level rate of wrong alerts disproves the Intrusion Detection Systems (IDS) performances and decrease its capability to prevent cyber-attacks which lead to tedious alert analysis task. Thus, it is important to develop new tools to understand intrusion data and to represent them in a compact forms using, for example, an alert clustering process. This hot topic of research is studied here and an understandable taxonomy followed by a deep survey of main published works related to intrusion alert management is presented in this paper. The second part of this work exposes different useful steps for designing a unified IDS system on the basis of machine learning techniques which are considered one of the most powerful tools for solving certain problems related to alert management and outlier detection.

Keywords: Intrusion detection systems; alert clustering; taxon-omy; survey; machine learning

Wajdi Alhakami, “Alerts Clustering for Intrusion Detection Systems: Overview and Machine Learning Perspectives” International Journal of Advanced Computer Science and Applications(IJACSA), 10(5), 2019. http://dx.doi.org/10.14569/IJACSA.2019.0100574

@article{Alhakami2019,
title = {Alerts Clustering for Intrusion Detection Systems: Overview and Machine Learning Perspectives},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2019.0100574},
url = {http://dx.doi.org/10.14569/IJACSA.2019.0100574},
year = {2019},
publisher = {The Science and Information Organization},
volume = {10},
number = {5},
author = {Wajdi Alhakami}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2021

29-30 April 2021

  • Virtual

Computing Conference 2021

15-16 July 2021

  • London, United Kingdom

IntelliSys 2021

2-3 September 2021

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2021

28-29 October 2021

  • Vancouver, Canada
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© 2018 The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org