The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Alerts Clustering for Intrusion Detection Systems: Overview and Machine Learning Perspectives

Author 1: Wajdi Alhakami

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2019.0100574

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 10 Issue 5, 2019.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The tremendous amount of the security alerts due to the high-speed alert generation of high-speed networks make the management of intrusion detection computationally expensive. Evidently, the high-level rate of wrong alerts disproves the Intrusion Detection Systems (IDS) performances and decrease its capability to prevent cyber-attacks which lead to tedious alert analysis task. Thus, it is important to develop new tools to understand intrusion data and to represent them in a compact forms using, for example, an alert clustering process. This hot topic of research is studied here and an understandable taxonomy followed by a deep survey of main published works related to intrusion alert management is presented in this paper. The second part of this work exposes different useful steps for designing a unified IDS system on the basis of machine learning techniques which are considered one of the most powerful tools for solving certain problems related to alert management and outlier detection.

Keywords: Intrusion detection systems; alert clustering; taxon-omy; survey; machine learning

Wajdi Alhakami, “Alerts Clustering for Intrusion Detection Systems: Overview and Machine Learning Perspectives” International Journal of Advanced Computer Science and Applications(IJACSA), 10(5), 2019. http://dx.doi.org/10.14569/IJACSA.2019.0100574

@article{Alhakami2019,
title = {Alerts Clustering for Intrusion Detection Systems: Overview and Machine Learning Perspectives},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2019.0100574},
url = {http://dx.doi.org/10.14569/IJACSA.2019.0100574},
year = {2019},
publisher = {The Science and Information Organization},
volume = {10},
number = {5},
author = {Wajdi Alhakami}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Virtual

Computing Conference 2023

22-23 June 2023

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org