The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2019.0100577
PDF

A Novel Framework for Drug Synergy Prediction using Differential Evolution based Multinomial Random Forest

Author 1: Jaspreet Kaur
Author 2: Dilbag Singh
Author 3: Manjit Kaur

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 10 Issue 5, 2019.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: An efficient prediction of drug synergy plays a significant role in the medical domain. Examination of different drug-drug interaction can be achieved by considering the drug synergy score. With an rapid increase in cancer disease, it becomes difficult for doctors to predict significant amount of drug synergy. Because each cancer patient’s infection level varies. Therefore, less or more amount of drug may harm these patients. Machine learning techniques are extensively used to estimate drug synergy score. However, machine learning based drug synergy prediction approaches suffer from the parameter tuning problem. To overcome this issue, in this paper, an efficient Differential evolution based multinomial random forest (DERF) is designed and implemented. Extensive experiments by considering the existing and the proposed DERF based machine learning models. The comparative analysis of DERF reveals that it outperforms existing techniques in terms of coefficient of determination, root mean squared error and accuracy.

Keywords: Machine learning; random forest; drug synergy

Jaspreet Kaur, Dilbag Singh and Manjit Kaur, “A Novel Framework for Drug Synergy Prediction using Differential Evolution based Multinomial Random Forest” International Journal of Advanced Computer Science and Applications(IJACSA), 10(5), 2019. http://dx.doi.org/10.14569/IJACSA.2019.0100577

@article{Kaur2019,
title = {A Novel Framework for Drug Synergy Prediction using Differential Evolution based Multinomial Random Forest},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2019.0100577},
url = {http://dx.doi.org/10.14569/IJACSA.2019.0100577},
year = {2019},
publisher = {The Science and Information Organization},
volume = {10},
number = {5},
author = {Jaspreet Kaur and Dilbag Singh and Manjit Kaur}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org