The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2019.0100618
PDF

Analysis of Spatially Modelled High Temperature Polymer Electrolyte Membrane Fuel Cell under Dynamic Load Conditions

Author 1: Jagdesh Kumar
Author 2: Jherna Devi
Author 3: Ghulam Mustafa Bhutto
Author 4: Sajida Parveen
Author 5: Muhammad Shafiq

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 10 Issue 6, 2019.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: This paper presents an interesting approach to observe the effects of the load variations on the performance of high temperature polymer electrolyte membrane fuel cell system, such as: hydrogen and air flow rate, output voltage, power and efficiency. The main advantage of this approach is to analyse the internal behaviour of the fuel cell like current-voltage characteristics during energy conversion, when the load is varying dynamically. This approach of power system simulation models fuel cell system by integrating 3D-COMSOL model of high temperature polymer electrolyte membrane fuel cell with MATLAB/Simulink model of the fuel cell system. The MATLAB/Simulink model for the fuel cell system includes the fuel cell stack (single cell), load (sequence of currents), air supply system (air compressor), fuel supply system (hydrogen tank), and power-efficiency block. The MATLAB/Simulink model is developed in such a way that one part behaves as an input model to the 3D-COMSOL model of the fuel cell system, whereas second part behaves as an output model that recovers the results obtained from the 3D-COMSOL of the fuel cell. This approach of power system modelling is useful to show the performance of high temperature polymer electrolyte membrane fuel cell in much better and accurate way.

Keywords: Current-voltage characteristics; energy conversion; fuel cells; power system modeling; power system simulation

Jagdesh Kumar, Jherna Devi, Ghulam Mustafa Bhutto, Sajida Parveen and Muhammad Shafiq, “Analysis of Spatially Modelled High Temperature Polymer Electrolyte Membrane Fuel Cell under Dynamic Load Conditions” International Journal of Advanced Computer Science and Applications(IJACSA), 10(6), 2019. http://dx.doi.org/10.14569/IJACSA.2019.0100618

@article{Kumar2019,
title = {Analysis of Spatially Modelled High Temperature Polymer Electrolyte Membrane Fuel Cell under Dynamic Load Conditions},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2019.0100618},
url = {http://dx.doi.org/10.14569/IJACSA.2019.0100618},
year = {2019},
publisher = {The Science and Information Organization},
volume = {10},
number = {6},
author = {Jagdesh Kumar and Jherna Devi and Ghulam Mustafa Bhutto and Sajida Parveen and Muhammad Shafiq}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org